Qt-DAB 6.8

Jan van Katwijk, Lazy Chair Computing
The Netherlands

November 10, 2024

Qt-DAB-6.8

NPO (8001) “ 2024-nov-06 14:48 runtime O hr, 5 min ©

service El NPO Radio 2 Pop N

NFO Radio 1 stereo 112kbit 48000

Bangles

NPO FunX & PAUL!

Marasl El Quakili - AVROTROS

nextLabel Bangles - Eternal flame

scanlist favorites

(© both the software and this document is with J.vanKatwijk, Lazy Chair Computing. While the software
is available under a GNU GPL V2, the manual is not. No parts of this document may be reproduced without
explicit written permission of the author. I can be reached at J.vanKatwijk at gmail dot com

Contents

1 Qt-DAB-6.8

1.1 Introduction e
1.2 Hardware Requirements oo
1.3 Precompiled versions

2 The GUI: the widgets and the control

2.1 Introduction L
2.2 Thewidgets L
2.3 Technical details L
2.4 The spectrum widget Lo
2.5 Configuration and control L o Lo L
2.6 Coloring buttons and scopes

3 Contents, scanning and maps

3.1 Imtroduction e
3.2 Looking at the content of the current channel
3.3 Showing TII data
3.4 Scanning
3.5 The TII database, transmitter names and distances
3.6 Transmitternames and amap Lo

4 Scheduling in Qt-DAB-6

5 Supported input devices

5.1 The SDRplay RSP
5.2 The AIRSPY o o o
5.3 The Hackrf e
5.4 The LimeSDR e
5.5 The RTLSDR stick
5.6 The Plutodevice e
5.7 Support for Soapy (Linux only)
5.8 rtltep . . .o
5.9 Input from a spyServer Lo
5.10 Fileinput L
5.11 Other devices e

6 A Note on building an executable

6.1 Introduction L
6.2 Download the source, the required libraries
6.3 Configure devices and install support libraries
6.4 Handle further configuration issues 0L
6.5 Compiling, installing and running L L.

7 Acknowledgements

NSO

N © =3 ot ot Gt

8 Disclaimer 35

A Adding support for a device 35
A.1 The Qt-DAB device interface 35
A.2 What is needed to install another device 37
A.3 Modifications to the device selector 37
A.4 Linking or loading of device libraries 38

1 Qt-DAB-6.8

1.1 Introduction

Qt-DAB is an advanced program for decoding terrestrial DAB and DAB+ transmissions. The
program decodes a DAB stream, input is by an SDR device or from a file. Qt-DAB is (or
can be) configured with a number of popular SDR devices for input, such as SDRplay RSP’s,
AIRspy, Lime, Hackrf, Adalm Pluto, and obviously, the cheap RTLSDR devices (including the
recent V4 version), the dabsticks. Furthermore Qt-DAB can get its input from a file, or from
the outside world, using rtl_tcp, soapy or a spyserver.

Qt-DAB is developed on Linux (x64) computers. It will also run on RPI 4 and up running
some Linux variant, and is cross compiled for Windows (32 and 64 bit).

The focus in the development always is - next to actual decoding the signal of course -
visualisation of the signal in its raw and its processed form. This is reflected in the structure
of the GUI. That GUI consists of 4 larger (and a few smaller) widgets. While the main widget
is always visible, the other three are visible under user control:

e the main widget, the main widget - always visible - contains - next to ontrols for selecting
channels and services - the controls for the visibility of the other widgets;

e the configuration and control widget, contains a large amount of controls for different
settings in the program;

e the spectrum scope widget, containing a tabwidget giving the choice of one of 6 different
views on the signal;

e the technical details widget, showing the technical details of the audio of the selected
service.

The structure of this guide is simple, in section 2 the GUI and GUI widgets are described,
In section 3 some functions, related to scanning and showing the map, are discussed. in section
4 Scheduling of service selections is discussed, in section 5 the supported devces for the Qt-
DAB program are briefly discussed, and in section 6 some notes on building an executable are
presented.

The appendix contains a description of how to add a device to the list of supported devices.
An overview of Qt-DAB with the 4 main widgets, the DX display and the widget for the device
support, is visible is given in figure 1.

1.2 Hardware Requirements

Qt-DAB runs pretty well on modern PC’s. One does need a reasonable amount of computing
power, though. On an RPI the program can be compiled, on an RPI 4 and up the program
will run smoothly. Obviously on an Arduino it will not.

1.3 Precompiled versions

Linux x64 For Linux on the x64 PC, a so-called AppImage is available. Such an Applmage
is itself a small closed filesystem with all programs and libraries for running Qt-DAB aboard.
However, the Applmage does NOT contain support libraries for the various configured devices.

6nov 2:48PM 7 dx B100%
Bl]

x
NPO (8001) “ 2024-nov-06 14:48 runtime O hr, 5 min © NPORadio2 (NPO Rad2)
service : NPO Radio 2 o] frame dump p audio
PO Radio 1 . Ti2kbit 48000 sbr serviceld
Start Address of CU
Used CUs
Subchannel ID
e 22 N ! Bitrate in kBit/s
correction - s corrections/100
freg error. ecerrors
sn i R . ko Prot.level: EEP3-A

- de rate: n
time offset Bangl nal flarr <o
nextLabel DAEe,

. 2 Type:

scanlist favorites.
deoffset also on FM: 107100 Khz
signal quality

—

1812001E41
0.00 2 W notch 5848 mute time (inmin) 10
ppm control [] biasT

switch time (insec) 6
g

3 4 3 e
2 i co »

1 **" (4,5) Rotterdam/Celinex toren 16.5km176.9 " (4.0m) 5.0kW

2 (4,21) Alphen aan den Rijn/Celinextoren 19.7km 46.4° (0.0m) 12.6kW. \'
\

3 (4,9) Usselstein/Celinex Gerbrandytoren 42.2km 922 (2.0m) 8.0kW.

Figure 1: Qt-DAB and the 4 widgets

Windows For Windows no less than 3 installers are available, two for 32 bit versions, and
one for a 64 bit version. The difference between the 32 versions is the support for RT2832 based
(so-called) DAB sticks. The V3 version uses the regular RTLSDR library, the other version
the library optimized for V4 versions of the stick (that, according to reportings is rather deaf
when using with old version sticks).

Other systems For other systems no precompiled version is available. Of course, since the
sources for Qt-DAB are available, one might compile an executable. Building an executable
from the sources is not trivial, that is why a separate section is devoted to the build process.

2 The GUI: the widgets and the control

2.1 Introduction

When starting the software for the first time, there is -obviously- no device selected yet. Qt-
DAB then shows two widgets, the main widget, and the so-called configuration and control
widget. The latter shows at the right side of the bottom line a selector for configured devices'.

Once a device is selected and could be opened, the processing starts.

2.2 The widgets

The main widget shows the relevant data for the user’s selection of a channel and a service.
It displays slide(s) carried in the selected service (or some default slides), and dynamic label
text. Furthermore, it provides buttons for controlling the visibility of the configuration and

!Be aware that Qt-DAB does NOT provide the device libraries.

Qt-DAB-6.8 X

NPO (8001) “ 2024-nov-06 14:48 runtime O hr, 5 min © [|I
service NPO Radio 5 Oldies Music

stereo TiZkbit 48000

NPO FunX

+ . -
=i}
Diggy Dex ft. Inge van Calkar - Het Idee

nextLabel

scanlist favorites

Figure 2: main widget

control widget, the spectrum widget and the technical details widget, and for operations like
scanning, scheduling etc.

The left side of the widget is dedicated to channel and service selection. It shows on top the
name of the ensemble that is being received (touching that name with the mouse will display a
separate widget with the contents of the ensemble). The major part of the left side is dedicated
to ensemble display, in this view it shows services from the favorites list and below that list a
few controls. A choice can be made between the ensemble view, showing the list of services in
the current ensemble, and the favorites view, showing the services from the favorites list..

Selecting a service in either view is by clicking with the mouse on the service name. The
semantics of clicking with the mouse on the field right of the service name depend on the view
mode: in ensemble view the service will be added to or removed from the favorites, in the
favorites view the service will be removed from the favorites list.

With the channel selector, in the picture the small combobox labelled ”12C”, a channel
may be selected, channels are labelled "5A” to ”13F”. With the "up” and "down” arrow, the
selected channel number is incremented resp. decremented.

The scanlist button controls the visibility of the scan list, i.e. the list of services detected
at the most recent single scan.

As mentioned, the button - here labeled ensemble is used to switch views from ensemble
view to favorites view and back.

Note that the configuration and control widget provides selectors for setting the font, the
font size and the font color with which the service names are displayed.

Selectors If an ensemble is detected, its name shows above the servicelist ("NPO (8001)” in
the picture above). Clicking on that name controls the visibility of the content widget, i.e. a
widget showing the details of the services belonging to the current ensemble.

Audio services usually carry one or more slides that are displayed. In case a slide is not

(vet) found (see figure 2, a default slide is displayed (Qt-DAB has a number of default slides,
a slide change for default slides will happen once a minute).

On the top line in the right half of the widget, left of the time display, one sees a small
icon. When touched, a separate widget shows, displaying the directory where picture files, the
tii file and the log file are shown.

When a service is selected, its name appears in bold on the right half of the widget. Left of
that name ("NPO Radio 5” in the picture above) a small list-style icon controls the visibility
of the so-called technical widget, a widget showing details of the currently selected service.

The icon to the right of the name, the speaker, indicates whether or not the system produces
sound. Furthermore, it acts as mute button. If Qt_Audio is selected, below this speaker icon,
a Volume control is visible.

Most services, when running, produce next to audio and one or more slides, text, the
so-called DLS (Dynamic Label), "Diggy Dex ft. Inge van Calkar - Het Idee” in the picture
above. Clicking with the right mouse button on this text shows a (very) small menu opening
the possibility of saving the text to the OS’ clipboard.

Finally, the 4 (four) buttons below this text control (from left to right)

e the visibility of the configuration and control widget, a widget with a huge amount of
selectors for a large variety of setting of the system;

e the visibility of the spectrum widget, a widget dedicated to showing all kind of aspects
of the incoming DAB signal,

e the htitp handler, a handler that controls showing a map with indications of the trans-
mitters being received;

e the visibility of the scan monitor widget, a separate widget for controlling (single or
multiple) scans over all or selected channels in the band.

2.3 Technical details

Most services are audio services, and it is always interesting to see what the parameters of
the audio data are. The technical widget, see figure 3. shows these parameters. On top of
the widget, the name of the current service is repeated, together with - between brackets - the
short name - if any. Below this line, there are two buttons, both for saving audio data of the
current service. The button frame dump - when touched - instructs the software to dump the
AAC frames of the audio service into a file. Such a file can be played by e.g. VLC. The button
dump audio - when touched - instructs the software to dump the audio output into a ”.wav”
file, i.e. a PCM file, with a samplerate of 48000 samples/second.

The bottom of the widget shows the spectrum of the audio output, it shows that the audio
frequency goes to app. 15 to 16 KHz.

The three progress indicators above the spectrum display (for MP2 output there will be
only one) show the successrate of the different steps in the transformation from decoded DAB
data to audio. The steps are:

e Frame recognition and extraction. DAB+ audio is organized in frames, recognizing frames
in the input stream requires some testing and verification;

e Reed Solomon decoding. The indicator tells the successrate of the Reed Solomon decoder
over the last 25 frames (Note however, that the R-S decoding can fix up to 5 errors per
frame);

e AAC decoding. The indicator tells the successrate of interpreting the AAC frames and
transforming them into audio (PCM) samples.

Technical Details x

Lansingerland FM(Lland FM)

serviceld

oo
Mo Do
_ 0> T

Start Address of CU
Used CUs
Subchannel ID
Bitrate in kBit/s

=

=
CI OO Mg ng o3 o

rs corrections/100
ecerrors

audio % OK

(W]

o =
v

Prot. level:

code rate:
Type:
Language:

Frame

Figure 3: Technical details

Most of the other data that is displayed speaks for itself, a few less obvious numbers:

e 15 corrections displays the number of corrections, performed by the Reed-Solomon de-
coder in the last 100 frames. The Reed Solomon decoder operates with frames of 120
bytes, the last 10 of them being parity bytes, and is able to correct up to 5 byte errors
in a frame;

e cc errors displays the number of errors detected after the Reed Solomon decoder has
repaired the errors (of course, if the parity bytes in the data contain errors, it is hard to
see how an error free audio frame can be constructed);

e audio % OK displays the percentage of audio frames that reaches the audio output. If

the AAC decoding fails, no data is sent to the audio output (usually the soundcard). If
Qt_Audio is selected, this indicator is not used;

e The red label with text "MOT” shows that the currently selected services does not carry
MOT dat, i.e, the service described here does not contains slides and Qt-DAB will show
some generic default slide. The label colors green if MOT data is detected in the current
(audio) service.

spectrumscope x spectrumscope x

Spectrum (EE T ch el Jev » Spectrum Corr NULL i [ELLE Dev »

ok

5A

i
=
-1.3

12C

[}
[}
[}
o3

226,600Q26,80227,00Q27,20@27,40Q227,60@27,80Q28,000 -600 -400 -200 o 200 400 600

p

correction correction

[W}

freq error freq error

snr

snr

time offset time offset

Ll F0 £3 La or

(N W]

clock offset clock offset

226,600226,800227,000227,200227,400227,600227,800228,000

-600 -400 -200 0 200 400 600

PO T T = W B
[e O O o OO e

[]
Lm

synced signal quality synced signal quality

Figure 4: Spectrum scope and ideal signal

2.4 The spectrum widget

In version 6 the various scopes (displays) were put into a single widget. The ”tab” defines
which scope is shown. The widget further contains an I1Q scope, a waterfall display and a list
of quality indicators.

Figure 4 shows the spectrum of the signal. which has a width of just over 1.5 MHz. Below
the IQscope, a checkbox can be set to select what will be displayed, the ”dots” shown in figure
4 show the centerpoints of the constellations of the decoded signal, ideally they are fat dots
on 45, 135, 225, 315 degrees. Alternatively, the whole ”cloud” of dots of the constallations is
shown (figure 6).

The waterfall display is directly coupled to the selected scope, it will show the progress in
time of the data of the selected scope.

The first step in decoding DAB signals is synchronization, i.e. finding where the actual
data of a DAB frame starts in the incoming sample stream. The NULL scope (see figure 5,
scope right) shows the samples in the transition phase from the NULL period to the first data
block.

To achieve such a synchronization a form of correlation is used (figure 5, scope left).

Ideally the maximum in the correlation is on (or about) sample 504 of the current segment
of the incoming stream. The correlation scope here shows more than one peak, indicating that
more than a single transmitter is received. The software detects here three ”reasonable” peaks,
it is up to the software to synchronize, given the peaks.

synced

spectrumscope x

trum Corr NULL channel

spectrumscope

channel

correction
freq error
snr

time offset
clock offset

signal quality synced

Figure 5: Correlation scope and NULL signal

spectrumscope x

226,60Q26,80@27,00@27,20@27,.40@27,60027,80Q@28,000

(412)(45) (4 27)

226,600226,800227,000227,200227,400227,600227,800228,000

synced

correction

I i O

freq error

snr

time offset

clock offset -

signal quality EIEI X

Figure 6: TII scope

10

correction
freq error
snr

time offset

clock offset

signal quality an

If the current transmitter is "known”, i.e. we know its name and distance, the distance
and the estimated distances of other peaks to the receiver site are shown. In the picture here,
the transmitter transmitting the strongest signal has a distance of 16 km, the others, 19 km
resp. 40 km to the receiving location

As known, most transmitters send some identification data, encoded in the NULL period
of the DAB frames. This data, Transmitter Identification Information (TII) consists of two
numbers, a main Id and a sub Id, unique for each transmitter in a given country. The TII
scope shows the spectrum of the NULL period, that is where the TII data is to be found. In
this case, the software was able to detect that the TII data of the strongest signal is (04 05)
and signals from other transmitters in the network were deciphered as (4 21) and (4 12). The
pair (4, 5) is transmitted by a nearby transmitter in Rotterdam.

A 5-th scope, a so-called channel scope (see figure 7) shows the channel response.

The first data block of a DAB frame has predefined data, so an estimate of the ”channel”
is made by looking at the transformation of a selected set of carriers between transmitter and
receiver. The green coloured line in the picture shows the ampliyude of the channel,, the red
line the phase offset?.

spectrumscope x spectrumscope x

T channel

a

[u¥)
n o
_J
ca

]
ca

-600 -400 -200 o 200 400 600
, correction

1l
u
9

(

=
C3C3Lm
i =]

b Y o o o

03 o3y

—

time offset

[}
{mpu)

clock offset

oo Clockoffset 600 -400 -200 O 200 400 600

=y
[y
)
R i |

synced signal quality synced signal quality

Figure 7: channel scope and deviations scope

The deviation scope shows the offsets, expressed in Hz, computed from the phase offsets
in the decoded carriers. Ideally the offset in the decoded carrier is zero. Higher offsets means
higher chances on errors in the decoding.

The widget shows a number of quality indicators, derived from the incoming signal.

The numbers, an example shown in figure 8, read from top to bottom:

1. The coarse frequency correction and the small frequency correction, computed from a
DAB frame and applied to the data for the next DAB frame. Qt-DAB is able to correct
frequency errors to up to app 35 Khz, here the error is pretty small. Using a ”dabstick”
or so as device will show a much larger correction.

2. the remaining frequency offset, which - obviously - should be small, but shows the effect
of correcting incoming samples with an offset found earlier;

2A DAB block counts 1536 carriers, so the picture only shows a fraction

11

3. the measured signal/noise ratio (measured by looking at the signal strength in the NULL
period and the period that data is transmitted);

4. the time offset, i.e. the error in the sample clock;

5. the clock offset, here we measure how many samples we are short or we have too many
per second, here the amount of samples, measured in app 10 seconds, is precise what it
should be;

6. the quality of the decoded signal, compared to the ”ideal” signal that shows 4 dots, one
in each quadrant. Higher values indicate a higher signal quality. The values are scaled
from 1 to 100, so a value above 60 shows a reasonable signal. There are many ways to
compute a quality value, the approach in Qt-DAB is derived from ETSI 101 290, which
is not completely fair since the decoding for DAB is primarily depending on the phase
of the signal and less on the amplitude.

12C

LIl
(W
(|

correction

—4 3

freq error

snr

C
.-
m
.U
m
.U

time offset

clock offset

signal quality ELI :

|

CaCa o oa

Figure 8: quality indicators

Finally, the bottom line of the spectrum widget shows a label and a progressbar. The label
turns green if time synchronization can be achieved (i.e. the software "knows” where to find
the DAB frames in the incoming sample stream.) The progressbar tells the success rate of
decoding the FIC (Fast Information Channel) data. If the percentage is less than 100 percent,
then apparently something is wrong with the signal and successfull decoding the payload is
highly unlikely.

2.5 Configuration and control

The configuration and control widget is the widget with the buttons and checkboxes for influ-
encing the configuration of the decoding process. The settings - together with other settings
generated by the system - are stored in the ”.ini” file3.

e At the top left, one may select the order in which the services, when displayed in an
ensemble, are presented;

3This ”’ini” file is a file created by Qt-DAB and stored in the user’s homedirectory

12

Configuration and control x

servicelds 10 mute time (in min) 10
alphabetically

font color switch time (insec) 6

subchannellds

=

snrviewer coordinates load table Raw dump skin

logger [] epg toxml
L] new tii detector [] utcSelector [main widget on top
close without asking [] epg automatic] start browser manually
dc removal [eti activated [local transmitters
clear scan save slides [] save transmitters
DX [lcorr defaultdecoder default sdrplay

Figure 9: Configuration and control

e Below that selection mechanism, a new selector is presented: the audio selector. While
traditionally portaudio was used for transporting the audio output to a soundcard, an
alternative, using a Qt provided mechanism is now available?..

e next to the audio selector, a path selector is shown. Files that are generated during
processing, such as files containing slides, the tii file, the log file, are by default stored
in a subdirectory Qt-DA B-files of the user’s home directory. Touching this button shows
a directory selection menu where one may choose another directory to hold the afore-
mentioned files. Note that the effect of changing the path is only on the next program
invocation.

e At the top in the middle, one may choose the font, the font size and the font color of the
displayed services;

e Below the selection of the font attributes of the displayed services, a spinbox is set on
which the threshold value for use in the detection of the tii values is given;

e At the top right. mute time tells the system what the duration should be in muting the
audio;

e Switch time tells the system what the waiting time should be after switching a channel
before the software is convinced that the newly selected channel does NOT contains DAB
data;

“In the current AppImage the Qt audio subchannel is switched off

13

The CPU load tells the overall load of the CPU.

Below the top, there are two rows with push buttons

device, a button controlling the visibility of the device widget; A device widget usually
shows controls for setting e.g. gain, and once these are set, there is in general no need
to have the widget visible;

port allows setting another port number than the default one used otherwise for the http
handler, i.e. for communicating with the webbrowser when displaying maps and data on
maps;

dlText controls an option to save the data from the dynamic label into a file. Touching
it will show a file selection menu, touching it again will close the file. If a file is selected,
the texts in the dynamic label are stored in the file. Note that in this version it is also
possible to save the current text of the dynamic label. Select the section of the text with
the mouse, click with the right hand side mouse button and a small menu appears with
an option to save the selected text on the clipboard;

reset will stop all activities and do a restart;

schedule button - when touched - will make a schedule menu visible with which future
actions (up to 7 days ahead) can be scheduled;

snr viewer controls the visibility of a small display, showing graphically the progress in
time of the SNR;

coordinates allows specifying the local coordinates, used to compute distance and azimuth
to transmitters;

load table, if correctly configured, pushing this button causes (re)loading a new instance
of the TII database (see section 4);

Raw dump (Obsolete) allows selecting a file to which the input data will be saved in a
PCM file. Use xml files instead;

skin allows selection of a skin for the displayed widgets. The selection will be effective
the next program invocation; The default skin chosen is Darkeum.

Below these buttons there is a list of 14 check boxes (in the column left the entry ”upload
enable” is unused)

logger, if selected, some logging data will be written on a file logFile.tzt, on the Qt-DAB-
files folder/directory.

epg to xml tells the system to map EPG data using an imported library to xml. Note that
it 1s known that the imported library has a bug that might lead to a crash of the program;

new tit detector. TII detection may use a second algorithm that detects TII data some-
times earlier, but generates more erroneous TII values;

14

e utc Selector, when enabled shows time as UTC rather than local time;

e main widget on top, as it suggests, enabling this ensures that the main widget always
will be on top. Note that it might cause problems on Windows, since newly generated
widgets will be on top and therefore be covered by the main widget. Not ideal if the
new, covered, widget asks for confirmation;

e close without asking does what it suggests;

e epg automatic. Some ensembles carry - next to regular services - an EPG (Electronic Pro-
gram Guide) service. If enabled the system will execute that service in the background.
Note however, that SPI/EPG handling is under construction;

o start browser manually. By default, on enabling the http service, the local default browser
will be started. If this option is enabled, the user has to start his/hers favorite browser;

e dc removal, when selected the software tries to remove the DC component in the incoming
signal’

e cti activated. Since Version 5 of the Qt-DAB software. there is an option of generating
an ETP file from the current channel input. If this option is enabled, the scan button
on the main widget is changed in an ”eti” button, with which the eti generator can be
started and stopped;

e local transmitters if enabled, the transmitters shown on a map will only be the ones
belonging to the current channel;

e clear scan. On scanning (single scan, see below) the service names envountered will be
added to the scanlist that can be made visible on the main widget. If this option is
activated, that list will be cleared on a new scan;

e save slides does what it suggests, when enabled, slides appearing with the services are
stored in the afore mentioned path.

e save transmitters. If checked, transmitter names will be saved into a file (see section 4).

bottom line The bottom line of the configuration and control widget contains two check-
boxed and three comboboxes. The checkboxes are:

e the DX selector, when set, instructs the software to try to detect as much transmitters in
the data from the NULL period as possible. The names of the transmitters are displayed
on a separate widget, and - when scanning continuously - all detected transmitters are
displayed;

e the corr selector influences the correlation, if set, the correlation module will report the
first peak in the correlation (above a certain minimum), rather than the strongest. This
solves the problem of decoding when the correlation value oftwo (or more) transmitters
is (almost) equal.

SETI stands for Ensemble Transport Interface, defined in ETS 300 799

15

The comboboxes are

e a selector for the decoder, just to experiment a number of (more or less) different ap-
proaches are exercised to map the phase of a given signal onto (soft) bits;

e the audio out selector, the selector is filled by the underlying sound system;

e the device selector, the configured devices are listed here. Note that Qt_DAB is unique
in that during a session another device can be selected.

The settings of these selectors is always stored in the ”.ini” file and used in initialization.

2.6 Coloring buttons and scopes

Colors for buttons and the scopes are personal. While not essential for functioning, the ability
to choose one’s on color scheme seems important to me. So, a color for the different buttons
on the main widget and on the configuration and control widget can be set (and subsequently
changed). Touch the button with the right mouse button and a small widget appears in which
first the background color, and second the text color can be selected (see figure 10 for the
selector as appearing in the Applmage).

baseColor x

Figure 10: Button color selection

The same applies to the scopes in the spectrum widget, clicking with the right mouse button
on the field will show a small selection widget with which a background color, a grid color and
a curve color can be set. The color settings are immediately effective and maintained between
successive program invocations.

3 Contents, scanning and maps

3.1 Introduction

Qt-DAB can display a description of the content of the currently selected channel and offers
extensive options for scanning.

16

qt-dab x

current ensemble

Rotterdam/Cel...

dab

Dutch
Dutch
Dutch
Dutch

Dutch Current Affairs

Dutch Serious

Dutch Na

Figure 11: Content description

3.2 Looking at the content of the current channel

Of course, even without scanning, it is possible to get a view on what services are available
in the currently selected channel. Next to the obvious list of service names as given on the
ensemble display on the main widget, one might want a look at the ”content”, i.e. details of
the ensemble and its constituents.

Picture 11 shows the content of the NPO ensemble, it shows that the TII identifiers at
the time of reception were 04 05, the transmitter from which the data is received is located in
Rotterdam, that 9 services were detected and the SNR was 9.

For each of the services (NPO does not transmit a data service anymore) the known data
is printed. Note that it might take some time after selecting a channel, before all data items
are known. Whether or not the service description shows an FM alternative FM frequency
might not be known before a few seconds have passed.

Clicking on a service in this list does select that service, double clicking on the widget
allows saving the data in a ”.csv” file.

3.3 Showing TII data

The configuration and control widget has a selector, DX, that when set causes the software
to look for more than just the strongest signal in the DAB input. Qt-DAB will then try to
identify as many as possible transmitters from which the receiver gets signal in, see figure 12.
Qt-DAB identifies the transmitter whose signal is currently the strongest (in the picture the
transmitter in Rotterdam is - at the time the picture was taken - the strongest).

When the DX selector is set, Qt-DAB stores the findings in a text file. For both Windows
and Linux, this file is found in the Qt-DAB-files folder in the user’s home directory, or in the
path specified by the user by entering a path after clicking on the Path button. The filename
is 7tii-files.txt”. Note that Qt-DAB does create the file but never will remove it.

17

transmitter 2

(4,21) Alphen aan den Rijn/Cellnex toren 37.2km156.9 ° (0.0m) 12.6kW

#*** (4,5) Rotterdam/Cellnex toren 63.3km 178.9 * (4.0m) 5.0kW
(4,9) lJsselstein/Cellnex Gerbrandytoren 64.3km138.7 ° (2.0m) 8.0kW

Figure 12: TII data

3.4 Scanning

Touching the scan button controls the visibility of the scan monitor (figure 13). The start

scan monitor x

scan status

start stop show

load default store defaull load skipfile store skipfile

single scan

Figure 13: Scan monitor

and stop buttons on the monitor widget have their obviosu functions, the button labeled show
button controls the visibility of the skiplist.

In most cases it is known that on some specific channels no DAB signal will be found. Of
course, it is a waste of time to include these channels in the scan, therefore Qt_DAB has the
possibility of indicating which channels can be skipped, hence the name skipList.

A default a default skiplist may be used, the data from this list is stored somewhere with
other DAB data. If, however, one wants different skiplists, e.g. for scanning in different
directions, one may create separate - named - skiplists. Such a skiplist is stored in xml format
in a file.

Scanning itself is in one of three modes:

e in until data mode, scanning continuous until a channel is detected with DAB signals;

e in single scan mode - the default mode - a single scan is made over all channels (except of
course the ones mentioned in the active skipList) of the band, and will stop afterwards;

e in continuous mode, scanning will continue until stopped by the user.

Of course, the output of the different modes will be different, while in the single scan mode a
list is generated with for each channel in which DAB data is detected a full description of that

18

data (similar to the content description), when running in continuous mode, only a single line
will be generated for each ensemble encountered (see figure 14).

Figure 14: Result from continuous mode

3.5 The TII database, transmitter names and distances

As mentioned earlier, the NULL period preceding the data in a DAB frame may contain an
encoding of a number identifying the transmitter. DAB is transmitted with a large number of
lower power transmissions, all using the same frequency, the encoding of the TII (Transmitter
Identification Information) is added to the NULL period and is used to identify the transmitter.

A large database exists (and is continually updated) with program and location information
of DAB transmitters (see www.FMList.org) worldwide. The owner of the database kindly
provided an URL to extract the relevant data for DAB transmitters for use with Qt-DAB
only. Due to the latter requirement, the code to access the database is not open source, and
is therefore not part of the source tree.

However, code is included in the precompiled version with which the database can be
loaded. The ”load table” button on the configuration and control widget will ensure that a
copy of the freshly acquired database is installed in the user’s home directory.

Alternatively, Qt-DAB can also be configured to use a library with which accessing a local
copy of the database is possible, that is why a local copy of the database is provided for in the
source tree.

Given that access is obtained to a local copy of the database, and given that the home
position of the system where Qt-DAB is running is known, Qt-DAB displays the name of
the transmitter received (by looking up the TII code in the database), and will compute an
estimate of the distance and the azimuth.

19

Figure 15: Transmitters on the map

3.6 Transmitternames and a map

Qt-DAB offers the possibility of displaying a map on a webbrowser with the home location
and the names. location and distance to the home location of the transmitters seen.

The button http on the main widget will - whenever the database is accessible and the
home location is known by Qt-DAB - issue a command to start a web browser, and will send
data about the home location and the transmitters received to the browser program as shown
in figure 15°. Note that while by default the default browser on the syste is selected, the
configuration and control widget contains a checkbox that, when set, tells the software that
the user wants to select the webbrowser him /herself.

The right hand side of the map contains a list of transmitters, with for each transmitter the
name, the precise location and if known the transmission power. The description is augmented
with the distance and the azimuth from the specified home to the transmitter. In figure 16
part of the list is shown in more detail.

The picture shows that the transmitter with the furthest distance was found on 374 Km,
that the number of transmitters - collected for different channels - is 22.

The transmitter descriptions can be saved in a file. If the checkbox save transmitters is
checked, the http handler will - on start up - show a file selection menu, for selecting a file in
which the descriptions are stored.

4 Scheduling in Qt-DAB-6

When working, I am usually listening to a service that transmits (decent) music without too
much talking. But then I want to hear the news bulletins on the hour on another service and
of course in 9 out of 10 cases I am late. That is why Qt-DAB has a mechanism to switch over
to a specified activity at a specified times.

5The picture of the map is made available by Herman Wijnants

20

Qt-DAB

> Current: EysiCelinex Toren

1| selectea:

8B-=>Kreuzberg (Rhon) (10.00 kW)
di sep 26 18:33:31 2023 GMT
50.369427—-9. 980506

Distance to home 374km 100°

Number of transmitters 22

| Furthest distance by

~ 8B=>Kreuzberg (Rhon) (10.00 kW)
di sep 26 18:33:31 2023 GMT
50.369427 9.980506

_ Distance to home 374km 100°

Transmitters
9D-=>Aachen/Karlshohe (500 KW)
di sep 26 18:24:19 2023 GMT
50.745586 6.043275

Distance to home 97km 106°

e

8A=>Raeren/Petergensfeld (2.00 kW)
. disep 26 18:24:44 2023 GMT
50.653221 6.169
Distance to home 108km 110°
: 9B-=>Aachen/Karishdhe (5.00 kW)
di sep 26 18:25.08 2023 GMT
- 50745586 6.043275
Distance to home 97km 106°
4 9C=>Eys/Celinex Toren (2 00 kW)
di sep 26 18:25:16 2023 GMT

»~ 50832016 5.925764
- Distance to home 86km 101°

Figure 16: list of transmitters

The scheduling option allows scheduling an operation to be performed within the next 7
days on a specified time. Since the scheduling mechanism is part of the program, Qt-DAB
should run for the scheduling to be effective. Scheduling settings are kept between program
invocations, on program startup, the software will remove schedule instructions that refer to
the past.

Touching the schedule button shows a selection widget, as shown in figure 17

The first step is selecting a service name or operation. The service names are those in the
currently selected channel, and those in the preset list. Furthermore, some operations can be
selected

e nothing, with the obvious semantics;

exit, which, when executed will terminate the execution of Qt-DAB;

framedump for scheduling the recording of the AAC frames for the service that is active
at the moment the scheduling time is reached,

audiodump, the same for the PCM output;

dltext, for scheduling the start of saving the dynamic label text in a file;

ficDump, for scheduling the start of the dump of the FIC data into a file.

any of the services known to the software, i.e. not restricted to the current channel.

21

service select X

nothing

exit

framedump

audiodump

diText

ficDump

12C:NPO Radio 1
12C:NPO Radio 2
12C:NPO 3FM
12C:NPO Klassiek
12C:NPO Radio 5
12C:NPO Soul & Jazz
12C:NPO FunX
12C:NPO SterrenNL

AT R AP TR A L P 1

Select a service

Figure 17: Schedule selection

Note that executing the command when a previous invocation of that command is still active,
will terminate the execution of the operation.

Having selected an operation of service, the next step is specifying the time and day of the
operation to be executed. A small widget shows, that allows setting day and time. see figure
18

If the list of scheduled events is not empty, it will be shown in a separate (small) widget,
see figure 18.

5 Supported input devices

Qt-DAB supports a variety of input devices, the Adalm Pluto, the AIRspy, the hackrf, the

qt-dab X

service name

time select

| audiodump vr

Figure 18: Schedule time selection and the schedule list

LimeSDR, RT2832 based sticks and SDRplay RSP devices. Furthermore, there is support for
the rtl_tcp server, support for the spyserver, for file input (raw, wav and xml), and for devices

22

for which a Soapy interface library exists,

Both the appImage and the Windows installer are configured with (almost) the whole range
of devices: SDRplay RSP (different versions for the 2.13 and 3.XX library versions), the Adalm
Pluto, the AIRspy, the hackrf, the LimeSDR, and - of course - the RT2832 based dabsticks.

5.1 The SDRplay RSP

The Qt-DAB software supports all RSP’s from SDRplay. Qt-DAB provides two different device
handlers for the RSP’s, one for devices using the 2.13 SDRplay interface library, the other one
supports devices using the 3.0X SDRplay interface library. Note that if API 3.10 or up is
installed on Windows, the 2.13 library is not accessible. Note furthermore that the recently
announced RSP 1B is supported, and the new RspdxR2 is supported when the library version
3.15 (or up) is installed (the picture shows that 3.14 was installed).

The V3 support is extended, while the V2 support already had a selector for the biasT,
the V3 now supports switching on the notch filter (for blocking MSW and FM signals).

SDRplay control-v3 x

SDRpl trol X
play contro e

1812001E41
0.00 < [notch 60dB

RSP-la dump
180200D594

ppm control [biasT

0
agc 3

ppm control [] biasT

agc 4 min Ina state selector

L

lna state selector dump Antenna B

Figure 19: Qt-DAB: The two control widgets for the SDRplay

As figure 19 shows, the control widgets for the two different versions resemble each other,
their implementation differs considerably though. Both have spinboxes for setting the if gain
reduction, the Ina state and a ppm offset.

Since Qt-DAB is capable of correcting the frequency, there is no actual need for setting a
value here.

The spinbox for the if gain reduction is programmed to support the range of values between
20 and 59. The range of values for the Ina state depends on the model of the RSP. The software
detects the model and fills in the range accordingly.

If the agc is selected, the if gain reduction spinbox will be hidden, its value is then irrelevant.

The RSPdx (and its predecessor, the RSP II) has two (actually 3) slots for connecting an
antenna. If an RSPdx or RSP II is detected, a combobox will be made visible for antenna
selection.

Finally, both versions of the control widget contain a dump button. If touched, the raw
input from the connected device will be stored in a so-called zml formatted file. First a menu
is shown for selecting a filename, a suggestion for the name of the file device name - date is
given. Touching the button again will stop dumping and the file will be closed.

23

Where to get the driver library The driver library for the SDRplay devices is proprietary
software, the binary can be doenloaded from the sdrplay site (www.sdrplay.com).

M sirspy - [m} b4

0
-
17
=
i
1]

[)

Figure 20: Qt-DAB: Widgets for AIRspy control

5.2 The AIRSpy

The control widget for the AIRspy (figure 20, right) contains three sliders and a push button.
The sliders are to control the Ina gain, the mizer gain and the vga gain.

To ease balancing the setting of the sliders, two combined settings are included in the
widget, selectable by the tab sensitivity and linearity. Figure 20 left side, shows the setting at
selecting the tab sensitivity.

Touching the button labeled dump instructs the software to dump the raw stream of samples
into a file in the zml format (Note that while processing DAB requires the samplerate to be
2048000, that rate is not supported by the AIRspy, implying that the driver software has to
do some rate conversion. The xml file though will just contain the samples on the rate before
conversion).

If more than one airspy is detected, a widget will appear with which the device to use can
be selected.

Where to get the driver library The driver library for most Linux systems can be found
in the repositoty of the distribution.

5.3 The Hackrf

The control widget for hackrf (figure 21) shows, next to the Serial Number of the device, a few
sliders, a few checkboxes, a spinbox and a push button.

e the sliders are there for controlling the Ina and vga gain, the slider values are limited to
the range of possible values;

e The Ant Enable checkbox is for Antenna port Power control (not used in this controller);

e The Amp Enable checkbox is - if enabled - for additional gain on the antenna input;

24

HACKRF control x

biasT
Amp Enable

ppm Correction

0

HackRF One

Serial Number
0000000000000000a06063c8232d975f

Dump

Figure 21: Qt-DAB: Widget for hackrf control

e the ppm correction spinbox can be set to correct the oscillator (on 227 MHz, the Qt-DAB
software reports an offset of somewhat over 3 KHz);

e the Dump push button when pushed, starts dumping the raw input in xml file format.
Touching the button again will halt the dumping and close the file.

Where to get the driver library Most Linux distribution have in their repositories a
suitable driver library.

Qt-DAB X
lime handler

72 gain

antennas

'l underruns [filter

D overruns 5

Figure 22: Qt-DAB: Widget for Lime control

5.4 The LimeSDR

On selecting the LimeSDR (if configured), a control widget for the LimeSDR is shown (figure
22). The widget contains five controls:

e gain control, with predefined values;

e antennas, where Auto is usually the best choice;

25

e Dump, if touched, the raw input from the connected device will be written to a file in
the so-called xml format.

New is the inclusion of a filter. Note that the limeSDR reads samples with a samplerate
of 2048KHz with no filtering, while the frequency distance between successive channels is
1712KHz. So, DX-ing in adjacent channels, where e.g. the first channel contains a strong DAB
signal and the next one a weak, is difficult.

Therefore the control widget for the limeSDR has two additional controls,

e switching a software FIR filter on-off (the checkbox labeled filter),

e setting the filterdepth of the FIR filter (the spinbox below the checkbox).

Note that using the filter is not free, for a filter with a size of N, N * 2048000 complex additions
and multiplications are performed. While on a modern PC that is not an issue, it certainly is
on ARM based micros like the RPI 3.

Where to get the driver library The driver library is best compiled from sources, see
"https://wiki.myriadrf.org/Lime_Suite” fopr details.
5.5 The RTLSDR stick

On selecting the dabstick (i.e. RT2832 based devices) (if configured), a control widget for the
device appears (figure 23).

RT2832 dabstick *

ppm
181

gain

autogain [filter

[biasT 5
dump to xml file

dump to raw file

dabstick

Terratec NOXON DAB/DAB+ USB dongle (rev 1)

Figure 23: Qt-DAB: Widget for rtlsdr device

The widget contains just a few controls:

e a spinbox for setting the ppm. Note that on average the offset of the oscillator with
DABsticks is (much) larger than that with devices like the SDRplay. The DAB software
is able to correct frequencies to up to app 35 KHz, for some sticks the frequency error
was large and correction using the ppm setting was required.

26

e a combobox for setting the gain. The support software for RT2832 based devices generates
a list of allowable gain settings, these settings are stored in the ”.ini” file;

e a combobox for setting the autogain on or off;

e a push button that, when touched, will instruct the software to dump the raw input in
the aforementioned xml format. At first a menu appears for selecting a file. Touching
the button again will stop dumping and close the file.

New is the inclusion of a filter. Note that the DABstick reads samples with a speed of 2048S/s
for a signal with a bandwidth of app 1.536 MHz, while the frequency distance between suc-
cessive channels is 1712KHz. So, DX-ing in adjacent channels, where e.g. the first channel
contains a strong DAB signal and the next one a weak, is difficult.

The controller therefore contains an optional FIR filter, for which the rtlsdr control widget
has two additional controls:

e switching a software filter on-off (the checkbox labeled filter),
e setting the size of the FIR filter (the spinbox below the checkbox).

Note that switching the filter on is not for free, for a filter with a size of N, N * 2048000
complex additions and multiplications per second are performed. While on a modern PC that
is not an issue, it certainly is on ARM based micros like the RPI 3.

If more than one connected RTLSDR based device is detected, a widget appears on which
the device of choice can be selected.

Where to get the driver library While distributions as e.g. Ubuntu provide a shared
library for supporting the dabsticks, it is advised to compile the library from the sources.
The precompiled versions in the distributions require to ”blacklist” some kernel modules. See
"https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr” for details on building a shared library.

5.6 The Pluto device

When selecting luto, a widget (figure 24) appears with a spinbox for selecting the gain, and a
checkbox for selecting the agc. If agce is enabled, the spinbox for the gain setting is invisible.
The widget contains furthermore three buttons:

e the debug control button, when activated, instructs the software to show output on each
step in the initialization process (note that the setting of the debug button will be
maintained between invocations);

e the dump button will cause the original input - with a samplerate of 2100000 samples
per second” - to be stored in an xml file.

"The smallest samplerate that pluto gives is slightly larger than the required 2048000, 2100000 is chosen
since it is easy to handle

27

Pluto control -

[] biasT

running

Pluto interface
context name

device name

filter off debug off

Figure 24: Qt-DAB: Widget for Adalm Pluto device

e the filter button. The adalm pluto has as option specifying a fir-filter, to be executed
within the Pluto device. This implementation of the controller for pluto will load a
predefined filter onto the Pluto device which is enabled by default. With the filter
button the filter can be disabled or enabled. Note that the button text indicates the
action when touching, not the current state.

Where to get the driver library For the Adalm Pluto, libraries are available for Linux
and Windows, see ”https://wiki.analog.com/university/tools/pluto/users” for details.

5.7 Support for Soapy (Linux only)

soapy control X

soapy

180200D594

sdrplay

running

Figure 25: Qt-DAB: Widget for soapy
Soapy is a generic device interface, a kind of wrapper to provide a common interface to a

whole class of devices. Qt-DAB supports Soapy, and its use is tested with the Soapy interface
for SDRplay, hackrf and rtlsdr device.

28

The widget for soapy control (see figure 25) when applied to the soapy interface for the
SDRplay contains simplified controls, compared to the regular controls for the SDRplay.

Note however, that to use Soapy for interfacing a specific device, a soapy device interface
should have been installed for that device.

5.8 rtl_tcp

rtl_tep is a server for rtlsdr devices, delivering 8 bit 1QQ samples (i.e. 2 bytes per sample).

In the small widget (see figure 26) the ip address of the server can be given. Since the
default port for the server is 1234, that port number is the one used by the client. After
clicking the connect button, the client will look for a server and pass some parameters.

rtl-tcp control x

connect disconnect
20 gain
0 ppm

0 Offset

Enter IP address,
then press return

Qt-DAB x

192.168.178.60

Figure 26: Qt-DAB: Widget for rtl_tcp

rtl_tcp_client

However, the port number can be set in the ”.ini” file, by setting

rtl_tcp_port=XXX

where XXX is to be replaced by the portnumber of choice.

5.9 Input from a spyServer

Spyservers are well known, they provide a common interface to the remote use of either an
AIRspy device or an RTL2832 based dabstick (see figure 27).

On starting the spy server interface asks for an IP address to be filled in, the port used is
5555.

Qt_DAB offers two versions of the spyserver, one for 8 bit output and one for 16 bit output.
Of course, transmission of DAB input requires quite some bandwidth, for 16 bit data, and an
input rate of 2500000 (as for the AIRspy), with 4 byte samples (2 x 2), the transmission rate is
over 10 MByte/second. Since data is sent as packages, with a (small) header, the actual rate
is slightly over 10 Mbyte. Of course, the using the 8 bit variant reduces it to app half.

5.10 File input

Qt-DAB supports both writing raw input files and reading them back. Writing a file as PCM
file is initiated by the Raw dump button on the main GUI, writing a file as xml file by the

29

spy_server x

connect

gain 21

[] autogain

connected

Alrspy One

794180039

Spy-server

Figure 27: Widget for spyserver

dump button on the various device widgets. Qt-DAB differentiates between reading

e raw 8 bit files as generated by e.g. Osmocom software (usually files with an extension
7.raw” or 7.iq”);

e PCM (i.e. ”7.wav”) files, provided the data is 2 channels , with 16 values,and with a
samplerate of 2048000, generated by Qt-DAB and with an extension ”.sdr”;

e xml files. The xml file format was defined by Clemens Schmidt (author of QIRX) and me
and aims at saving files in the original format, so to allow easy exchange between different
DAB decoder implementations. In order to support proper decoding of the contents, the
data in the file is preceded by a detailed description in xml, hence the name xml file
format.

Qt-DAB X qt-dab X

Playing pre-recorded file

Playing pre-recorded file
[usr/shared/dab-testfiles/bayern_20220330.raw

Jusr/shared/dab-testfiles/7b-radio-bremen.raw

seconds of

seconds of

Figure 28: Qt-DAB: Widgets for file input

When selecting file input ”.raw” or ”.wav”, a simple widget is shown (figure 28), with as
indication the number of seconds the file is being played.

Since processing an xml file implies some interpretation, the widget (figure 29) for control
when reading an xml file is slightly more complex. It contains - next to the progress in reading

30

the data - a description of the contents of the file. So, the program that generated the file as
well as the device used in that program are displayed, the number of bits of the samples, as
well as the number of elements is displayed as is the samplerate of recording and the frequency
of the recording.

xmlfiles x

fhomefjan/Downloads/2023-09-23_144657_6A.uff

continuous off

AbracaDABra

rtl-sdr [R820T] Generic RTL2832U OEM

recorded at 2023-09-2312:47:02
nrBits

nrElements
uint8

LSB
Channel frequency

samplerate

Figure 29: Qt-DAB: Widget for xml file input

Touching the cont button will instruct the software to restart reading at the beginning of
the segment in the file after reaching the end.

5.11 Other devices

Interfacing another device to Qt-DAB is not that complex, the interface contains a handful of
functions that are to be implemented. Interfacing is described elsewhere. The sourcetree of
Qt-DAB contains code for a few device handlers, these handlers are - since I do not have access
to the devices for which they are written - untested. While the uhd device seemed to have been
working with the included device handler, the device handlers for both the elad-s1 and the
colibri are very experimental and not tested. Anyway, I am always interested to experiment
further with these devices.

6 A Note on building an executable

6.1 Introduction

While for both Windows (32 and 64 bits) and x64 Linux precompiled versions are available,
there might be situations were once wants (or needs) to build and executable from the sources.
The precompiled executables are all made with a gcc based toolchain, for the Windows ex-
ecutables the mingw64-xx chain is used. In theory it would be possible to build a Windows
version with the microsoft C and C++ toolchain, due to incompatibilities between the different
toolchains this requires source modifications.

The description here is - therefore - based on the use of a gcc based toolchain for a unix/linux
type system.

The process itself consists of the following steps:

31

e Download the sources and select the AAC decoder;

e Download and install the required libraries;

e install the device libraries for the devices you want to have supported;

e handle further configuration issues;

e run qmake on the prepared ”qt-dab-6.8.pro” file;

e run make.

6.2 Download the source, the required libraries

For downloading the Qt-DAB sources, one needs ”git” to be present, on a Debian based system,
e.g. Raspbian on an RPI3 or 4

sudo apt-get update
sudo apt-get install git

Sources for Qt-DAB can be downloaded

git clone https://github.com.JvanKatwijk/qt-dab

Sources, specific to Qt-DAB-6.8, can be found in the subdirectory ”qt-dab-6.8”. The so-

called ”.pro” file, i.e. the one processed by gqmake, is named ”qt-dab-6.8.pro”.
Continuing on the Debian based system, one should load the required libraries (and toolchain)

sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo

apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get

install
install
install
install
install
install
install
install
install

qt5-gmake build-essential g++

pkg-config

libsndfilel-dev

libfftw3-dev portaudiol9-dev

zliblg-dev

libusb-1.0-0-dev mesa-common-dev

libgli-mesa-dev libgt5opengl5-dev
libsamplerateO-dev libqwt-qt5-dev qtmultimediab-dev
gtbaseb-dev libqt5svgb-dev

Note that implementation on Qt-6 will bring some changes, especially in the Qt-Audio
handling. Since the Applmage is built on Ubuntu 20, and Ubuntu 20 does not have suitable
support neither for Qt-6 nor for Qwt, the current implementations use Qt5.

Select the AAC decoder Depending on the choice in the configuration file (the file qt-
dab-6.8.pro)

CONFIG

#CONFIG

+= faad

+= fdk-aac

the support library for libfaad or for libfdk-aac needs to be installed. For libfaad one may

try

sudo apt install libfaad

For libfdk-aac one may try

sudo apt install libfdk-aac-dev

32

On my RPI 3 the latter could not be found, so libfaad was chosen.

It turns out that in some cases the libfdk-aac as provided by the Linux distribution does not
work properly. One can easily build the library from the sources as is done for the Applmage
built on Ubuntu 20.

git clone https://github.com/mstorsjo/fdk-aac
cd fdk-aac

mkdir build

cd build

cmake ..

make

sudo make install

6.3 Configure devices and install support libraries

Of course the support library for the device used should be installed as well, the followin devices
can be included in the configuration (note that support for file input is always included in the
configuration):

CONFIG += sdrplay-v2
CONFIG += sdrplay-v3
CONFIG += dabstick-linux
CONFIG += airspy-2
CONFIG += hackrf
CONFIG += lime

CONFIG += soapy

CONFIG += pluto

CONFIG += rtl_tcp
CONFIG += spyServer-16
CONFIG += spyServer-8

It is advised to comment out all devices from the configuration that are not used.

6.4 Handle further configuration issues

The qt-dab-6.8.pro file contains a myriad of possible configuration settings, most of them do
not need attention.

#CONFIG += console
CONFIG -= console

sets whether or not output is to be written to the terminal.

#DEFINES +
DEFINES +

__MSC_THREAD__
_THREADED_BACKEND _

The first option states whether or not a part of the (rather heavy) FFT operation in the
front end of the processing are to be done in a separate thread or not. For RPI 3 and up there
is no need to have that enabled

The second option, when enabled, instructs the software to run each backend on its own,
separate, thread. A ”backend” is the set of modules that interprets a selected (sub)service.

Of course, when running several backends simultaneously, it is beneficial to have this option
enabled.

#CONFIG += double
CONFIG += single

33

The setting determines whether all computations on the incoming signal are to be done in
single or double precision

CONFIG += PC
#CONFIG += NO_SSE

If the software is developed on/for a regular x64 based PC, select the first option. This
will ensure that for some computations are optimized for an x64 based system with SSE

instructions. If unsure, choose the second option, choosing the first option when the target is

not compatible with x64, lots of error messages appear®.

6.5 Compiling, installing and running
Once all required libraries are installed, and the configuration is as it should be, run
qmake
Depending on the Linux distribution, gmake or gmake-qt5 is the correct name. There is
always a chance that running qmake fails, because some library cannot be found. Usually this

is an issue with the location of the qwt library. Add the correct path to the qwt include files
to the INCLUDES section of the configuration file.

make -j X

The X in the second line tells how many parallel threads should be used. For an RPI, use

The resulting executable is installed in the subdirectory linuz-bin.

7 Acknowledgements

Qt-DAB and derived programs are written and maintained by me. The software is provided
as is, and made available under the Gnu GPL V2 license.

Many people contributed (and contribute) by providing feedback, suggestions and code
fragments, in particular:

e Andreas Mikula, for continuous feedback, testing and suggestions;

e Herman Wijnants, for his continuous enthousiastic feedback on and suggestions for the
Windows version of Qt-DAB;

e Stefan Poschel, for providing code for and giving suggestions to handling the AAC code;
e Stuart Langland, for its comments, suggestions and code contributions;

e probonopd, for its contribution with creating applmages;

e Przemystaw Wegrzyn, for contributing code for handling charsets;

e Paul Howard-Beard, for his enthousiastic experiments with new features, comments and
his suggestion to add features like a mute button, the per channel gain settings, and
alarm; and

8There are possibilities for selecting optimized code for RPI’s, the user is invited to experiment here

34

e Michael Lass, for showing me the use of the Gee address sanitizer, pointing out some
(actually too many) address violations discovered by the sanitizer and giving suggestions
and advice for the repair.

Furthermore I am grateful

e to SDRplay ltd (Andy Carpenter), for providing the possibility to use some SDRplay
RSP devices, all wonderful devices;

e to Benjamin Vernoux, for making an ATIRSPY device available;
e to Great Scott Gadgets, for making an HACKRF device available;
e to Jan Willem Michels, for making a LimeSDR device available;

e to Olaf Czogalla, for donating an RT2832 based stick after having lively discussions on
TPEG; and

e to Robin Getz (Analog Devices), for making an Adalm Pluto available, a device with
lots of possibilities, still to discover.

8 Disclaimer

Qt-DAB is developed as hobby program in spare time. Being retired I do have (some) spare
time and programming Qt-DAB (and my other programs) is just hobby.

It is important to notice that Qt-DAB is - both the sources as the precompiled versions
- available as is. While it is - obviously - nice if the Qt-DAB software is useful, there are no
guarantees, however. If the software does not fit your purpose, or you have problems building an
executable, recall that the Qt-DAB software is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

If, however, the software seems useful and you have suggestions for improving and/or
extending it, feel free to contact me, suggestions are always welcome (although no guarantees
are given that they will be applied.)

A Adding support for a device

In this section a description is given of how to add another device to be used in Qt-DAB.

A.1 The Qt-DAB device interface

The Qt-DAB device interface is defined as a class, where the actual device handler inherits
from.

class deviceHandler: public QThread {
Q_OBJECT

public:

deviceHandler ();

35

virtual “deviceHandler ();

virtual bool restartReader (int32_t freq);

virtual void stopReader ();

virtual int32_t getSamples (std::complex<float> *, int32_t);
virtual int32_t Samples ();

virtual void resetBuffer ();

virtual int16_t bitDepth () { return 10;}

virtual QString deviceName ();

virtual bool isFileInput ();

virtual int32_t getVFOFrequency ();

/7

// all derived classes are subject to visibility settings
// performed by these functions

bool getVisibility O);

void setVisibility (bool);

//

protected:
superFrame myFrame;
int32_t lastFrequency;

int theGain;

signals:
void frameClosed ();

};

While the class is merely an interface class, visibility of the driver’s widget is common to
all inheritors and therefore implemented in the body of this class.

A device handler for a - yet unknown - device should implement this interface. While
not stated explicitly, it is assumed that the samplerate for the delivered samples is 2048000
Samples/second.

A description of the interface elements follows

stopReader and restartReader are called on switching from one channel to another, and
their function is what the name suggests, stopping the data stream to Qt-DAB and
restarting the data stream on the given frequency. Note that for most devices the device-
10 is actually stopped and restarted, there is no need to implement it that way. Calling
restartReader when already running should have no effect.

getVFOFrequency returns the current oscillator frequency in Hz;

getSamples is the interface to the samples. The function should provide a given amount
of samples, the return value is, however, the number of samples actually read.

Samples tells the amount of samples available for reading. If the Qt-DAB software needs
samples, the function Samples is continuously called (with the delay between the calls)
until the required amount is available, after which getSamples is called.

resetBuffer will clear all buffers. The function is called on a change of channel.

bitDepth tells the number of bits of the samples. The value is used to scale the Y axis in
the various scopes and to scale the input values when dumping the input.

deviceName returns a name for the device. Some (dumping) operations use in the created
filename the name of the device.

36

o isFilelnput tells - as the name suggests - whether or not the input is from a file or a
device. When file input is "on”, operations involving e.g. changing the channel are not
very useful and will be ignored.

A.2 What is needed to install another device

Having an implementation for controlling the new device, the Qt-DAB software has to know
about the device handler. This requires adapting the configuration file (here we look at qt-
dab.pro) and the device selector.

Modification to the qt-dab.pro file Driver software for a new device, here called newDe-
vice, should implement a class newDevice, derived from the class deviceHandler.
It is assumed that the header is in a file new-device.h, the implementation in a file new-

device.cpp, both stored in a directory new-device.
A name of the new device e.g. newDevice will be added to the list of devices, i.e.

CONFIG += AIRSPY

CONFIG += newDevice

Next, somewhere in the qt-dab.pro file a section describing the files for the new device
should be added, with as label the same name as used in the added line with CONFIG.

newDevice {

DEFINES += HAVE_NEWDEVICE

INCLUDEPATH += ./qt-devices/new-device

HEADERS += ./qt-devices/new-device/new-device.h \

. add further includes to development files, if any

SOURCES += ./qt-devices/new-device/new-device.cpp \

. add further implementation files, if any
./qt-devices/new-device/newdevice-widget.ui
. add here libraries to be included

FORMS +
LIBS +

A.3 DModifications to the device selector

The class deviceChooser implements device selection, and is implemented in the file device-
chooser.cpp
In this file, first the include file need to be added, and a constant needs to be chosen for

identifications.
In the list of includes add

#ifdef HAVE_NEWDEVICE
#include new-device.h
#define NEW_DEVICE XXX
#endif

where XXX is a number unique in the device chooser.

The constructor of the class device Chooser builds op a list (vector) with assocations between
the name of the new device as string, and the constant identifier, defined above. In the
neighbourhood of e.g.

37

#ifdef HAVE_HACKRF
devicelList. push_back (deviceltem ("hackrf", HACKRF_DEVICE));
#endif

the text

#ifdef HAVE_NEWDEVICE
deviceList. push_back (deviceltem ("newDevice", NEW_DEVICE));
#endif

is added.
In the function _createDevice code is added to actually create an instance of the driver for
the new device Again, in the environment of

#ifdef HAVE_HACKRF
case HACKRF_DEVICE:

return new hackrfHandler (dabSettings, version);
#endif

the code for allocating a device handler is added

#ifdef HAVE_NEWDEVICE__
case NEW_DEVICE:

return new newDevice (...);
#endif

with parameters as needed.

A.4 Linking or loading of device libraries

The approach taken in the implementation of the different device handlers is to load the
required functions for the device library on instantiation of the class. This allows execution of
Qt-DAB even on systems where some device libraries are not installed.

The different existing drivers can be used as example if there is a need to implement the
dynamic loading feature. Obviously, if an executable is generated for a target system that does
have the library for the device installed, there is no need to dynamically load the functions of
that library.

38

