80
HiQ - A Modern Observability System

Release 1.1.7

Fuheng Wu

Feb 06, 2023






HiQ is named after Henry Fuheng Wu, Ivan Davchev, Qian Jun.

Imagine there’s no countries.
It isn’t hard to do.
Nothing to kill or die for.
And no religion, too.
Imagine all the people.
Living life in peace...

--John Lennon

Thanks List: Kathan Patel, Wei Gao, Karunakar Chinnabathini, Kulbhushan Pachauri, Tiger Deng,
Pingbo Zhang, Simo Lin, Jinguo Zhang

Special Thanks To Oleksandra For Reviewing The Project While Fighting The War And Helping Others.

Ve

%

Henry Fuheng Wu, Fremont CA, USA 2022







TABLE OF CONTENTS

Table of contents

1 HiQ Background

1.1  Monolithic Application vs. Distributed System and Microservice Architecture . . ... ..
1.1.1  What is a monolithic architecture? . . . . ... ... ... ...
1.1.2  What is a distributed/microservice architecture? . . .. ... ... ... ... ....
1.2 Monitoring and Observability . . . . . . . . ...
1.2.1  Blackbox monitoring . . . . . . . . . ...
1.2.2  Whitebox Monitoring . . . . . . . . . ...
1.2.3 Imstrumentation. . . . . .. . .. L L
1.3 Metrics . . . . o
131 ADbS . o o e
1.3.2 Delta . . . . o
1.4 Application Performance Monitoring . . . . . . . . . . . ... ... ... ...
1.5 Distributed Tracing . . . . . . . . . . e
2 HiQ Core Concepts
2.1 TargetCode . . . . . . e
2.2 Driver Code . . . . . . . e e e
2.3 HiQ Tracing Class/Object . . . . . . . . . e
2.4 LumberJack/Jack . . . . . .
2.5 LogMonkey King . . . . . . . . e e
2.6 HIQTree . . . . o . o e e e e
2.7 HIQConf . . . . . . e
2.8 TLatency Overhead . . . . . . . . . .
3 HiQ Tracing Tutorial
3.1 Global HIQ Status . . . . . . . . . . e
3.2 Dynamic Tracing . . . . . . . o . . e
3.3 Metrics Customization . . . . . . . .. . . L e
3.3.1  ExtraMetrics . . . . . . oL e e

15
15
15
15
16
16
16
16
19

21
21
22
24
24




3.3.2 Complex Data TYPe . . . o o v v v i e e e e e e e
3.3.3 Large Data Structure . . . . . . . . . .. L
3.4 Memory Tracing . . . . . . . . 0 e e e e
3.4.1 Timestamp With Non-latency Metrics . . . . . .. ... ... ... ... .......
35 Disk IJOTracing . . . . . . . . . e e e e e e
3.6 System I/O Tracing . . . . . . . . . o o i e
3.7 Network I/O Tracing . . . . . . . . . e e e e
3.8 Exception Tracing . . . . . . . . . . L e
3.9 Multiple Tracing . . . . . . . . o 0 oo e e

HiQ Advanced Topics

4.1 Customized Tracing . . . . . . . . . 0 0 i e
4.1.1 Log Metrics and Information tostdio. . . . . ... ... ... ... L.
4.1.2 Trace Metrics and Information In HiQ Tree . . . . . . . .. .. ... .. .......

42 LogMonkey King . . . . . . . . .
4.2.1 Log Metrics and Informationtostdio. . . . .. ... ... .. ... ... . ...
4.2.2  Log Metrics and Informationtofile . . . . . . ... ... ... .. 0.

4.3 LumberJack . . . .

4.4 Async and Multiprocessingin Python . . . . . .. .. ... o L

HiQ UI
51 Disable HIQ . . . . . . . . . e
5.2 Enable HIQ . . . . . . . . e e e

HiQ Distributed Tracing

6.1 OpenTelemetry . . . . . . . . . e

6.2 JaeGET . . . . . e e e e e e e
6.2.1 SetUp . . . o o e
6.2.2 Thrift + HIQ . .« « o o o e et e e
6.2.3 Protobuf + HiQ . . . . . . . . e e

6.3 ZIpKin . . . . L e e e
6.3.1 SetUp . . . o o e
6.3.2 JSON + HTTP + HiQ . . . . . o o o o o e e e e e e e e e e e e e e e e e e e
6.3.3 Protobuf + HiQ . . . . . . . . e

6.4 RaAY . . o e

6.5 Dask. . . . .

HiQ Vendor Integration

7.1 OCTAPM . . . . .
7.1.1 Get APM Endpoint and EnvironmentsSetup . . . . .. ... ... ... .......
7.1.2 HiQOciApmContext . . . . . . . . . . e
7.1.3 HiQOpenTelemetryContext . . . . . . . . . . . it
714 Reference . . . . . o e e

7.2 OCIFuUnctions . . . . . . . . . i e e

7.3 OCITelemetry(T2) . . . . . . e e e e e e e e e e

74 OCIStreaming . . . . . . . o o o i e e

7.5 Prometheus . .. . . . . . .

ol
ol
ol
93
o4
95
o6
59
60

61
62
63

65
65
66
67
68
68
69
70
70
72
72
73




HiQ - A Modern Observability System, Release 1.1.7

8 FAQ
81 HiQwvscProfile . . . . . . e
8.2 HiQvsZipKin vsJaeger. . . . . . . . . e e e e e e
83 HiQvsGaalVMInsight . . . . . . . . . .

9 Reference

10 HiQ API
10.1 HiQ Classes . . . .
10.2 Integration Classes

10.3 Distributed Tracing . . . . . . . . . . L e e

10.4 Metrics Client . .
10.5 Utility Functions

11 Installation

12 Get Started

13 Documentation
14 Examples

15 Contributing
16 Security

17 License
17.1 Indices and tables

Index

Index

91
91
93
93

95

97
97
97
97
97
97

99

101

105

107

109

111

113
113

115

115

Table of contents



HiQ - A Modern Observability System, Release 1.1.7

8 Table of contents



CHAPTER 1

HIQ BACKGROUND

HiQ is a library for software performance tracing, monitoring and optimization.

1.1 Monolithic Application vs. Distributed System and Microservice Archi-
tecture

1.1.1 What is a monolithic architecture?

It’ s a traditional approach to software development in which the entire system function is based on a
single application as a single, autonomous unit. A helpful analogy here would be a large block of stone
(a.k.a monolith). In software development, this single block would stand for a single platform.

In a monolithic app, all functions are managed and served in one place. Of course, an app has its inner
structure consisting of a database, client-side interface, business logic, but it still remains an indivisible
unit. Its components don’ t require API to communicate.

1.1.2 What is a distributed/microservice architecture?

In a microservice architecture, business logic is broken down into lightweight, single-purpose self-
sufficient services. As such, the infrastructure is akin to collection modules. Each service within this type
of architecture is responsible for a specific business goal. In essence, the microservice architecture looks
like a Lego construction, which can be decomposed into a number of modules. The interaction between
the components of the system ensured by means of API.




HiQ - A Modern Observability System, Release 1.1.7

Monolithic Architecture Distributed Microservices Design

User Interface

User Interface

GRPC HTTP
function call
Microservice GRPC > Microservice
(Business Logic 1) AP (Business Logic 2)

Business Logic /

function call

( Y HTTP i )
o Microservice
l (Business Logic 3) HTTP

Data Access Layer Database1 Dalabasez
Microservice
_ Queue (Data Access Layer)
Latabasew L \

Microservice ~—— — —

Process Space p N
’ R Latabasew Latahasew Latahasew
By Vision Services MLE 2021 — — —

1.2 Monitoring and Observability

Monitoring is tooling or a technical solution that allows teams to watch and understand the state of their
systems. Monitoring is based on gathering predefined sets of metrics or logs.

Observability is tooling or a technical solution that allows teams to actively debug their system. Observ-
ability is based on exploring properties and patterns not defined in advance.

1.2.1 Blackbox monitoring

In a blackbox (or synthetic) monitoring system, input is sent to the system under examination in the same
way a customer might. This might take the form of HTTP calls to a public API, or RPC calls to an exposed
endpoint, or it might be calling for an entire web page to be rendered as a part of the monitoring process.

Blackbox monitoring is a sampling-based method. The same system that is responsible for user
requests is monitored by the blackbox system. A blackbox system can also provide coverage of the target
system’ s surface area. This could mean probing each external API method. You might also consider a

10 Chapter 1. HiQ Background



HiQ - A Modern Observability System, Release 1.1.7

representative mixture of requests to better mimic actual customer behavior. For example, you might
perform 100 reads and only 1 write of a given APIL.

You can govern this process with a scheduling system, to ensure that these inputs are made at a sufficient
rate in order to gain confidence in their sampling. Your system should also contain a validation engine,
which can be as simple as checking response codes, or matching output with regular expressions, up to
rendering a dynamic site in a headless browser and traversing its DOM tree, looking for specific elements.
After a decision is made (pass, fail) on a given probe, you must store the result and metadata for reporting
and alerting purposes. Examining a snapshot of a failure and its context can be invaluable for diagnosing
an issue.

1.2.2 Whitebox Monitoring

Monitoring and observability rely on signals sent from the workload under scrutiny into the monitoring
system. This can generally take the form of the three most common components: metrics, Logs, and
traces. Some monitoring systems also track and report events, which can represent user interactions
with an entire system, or state changes within the system itself.

Metrics are simply measurements taken inside a system, representing the state of that system in a mea-
surable way. These are almost always numeric and tend to take the form of counters, distributions, and
gauges. There are some cases where string metrics make sense, but generally numeric metrics are used
due to the need to perform mathematical calculations on them to form statistics and draw visualizations.

Logs can be thought of as append-only files that represent the state of a single thread of work at a single
point in time. These logs can be a single string like “User pushed button X” or a structured log entry
which includes metadata such as the time the event happened, what server was processing it, and other
environmental elements. Sometimes a system which cannot write structured logs will produce a semi-
structured string like [timestamp] [server] message [code] which can be parsed after the fact,
as needed. Log processing can be a very reliable method of producing statistics that can be considered
trustworthy, as they can be reprocessed based on immutable stored logs, even if the log processing system
itself is buggy. Additionally, logs can be processed in real time to produce log-based metrics. In HiQ, LMK
(LogMonkeyKing) is used to write the log entry.

Traces are often used in distributed system. Traces are composed of spans, which are used to follow an
event or user action through a distributed system. A span can show the path of a request through one
server, while another span might run in parallel, both having the same parent span. These together form
a trace, which is often visualized in a waterfall graph similar to those used in profiling tools. This lets de-
velopers understand time taken in a system, across many servers, queues, and network hops. A common
framework for this is OpenTelemetry, which was formed from both OpenCensus and OpenTracing. Open-
Telemetry defines interface, but the implementations are in the specific software like Zipkin, Jaeger,
or Apache Skywalking.

Metrics, logs, and traces can be reported to the monitoring system by the server under measurement, or
by an adjacent agent that can witness or infer things about the system.

1.2. Monitoring and Observability 11



HiQ - A Modern Observability System, Release 1.1.7

1.2.3 Instrumentation

To make use of a monitoring system, your system must be instrumented. In some cases, code need to be
added to a system in order to expose its inner state. For example, if a simple program contains a pool
of connections to another service, you might want to keep track of the size of that pool and the number
of unused connections at any given time. In order to do so, a developer must write some code in the
connection pool logic to keep track of when connections are formed or destroyed, when they are handed
out, and when they are returned. This might take the form of log entries or events for each of these, or you
might increment and decrement the metric for the size of the queue, or you might increment an absolute
metric called connection_ number each time a connection is created, or each time a pool is expanded. In
other cases, like when you are using HiQ, you don’ t have to explicit instrument your code. HiQ will
implicitly instrument your code without touching the target code.

1.3 Metrics

Metrics can be categorized into two types: business metrics and system metrics. Business metrics are quan-
tified measures relavent to business logic and normally used to make business decision. System metrics
are quantitative measures of the software system, such as latency, memory, CPU load, disk I/O, network
I/O. HiQ is able to handle both metrics.

In monitoring and observability context, metrics, from another perspective, can be categorize into dif-
ferent types. Different software or organizations have different ways, for instance, GCP use 3 types way
and they call it Kind instead of type , Prometheus uses 4 types. In HiQ, we only use two types only: abs
metric and delta metric.

1.3.1 Abs

A abs metric, in which the value measures a specific instant in time. For example, metrics measuring
CPU utilization are absolute metrics; each point records the CPU utilization at the time of measurement.
Some other examples of a absolute metric are the current temperature, current time, and current memory
resident set size.

1.3.2 Delta

A delta metric, aka relative metric, in which the value measures the change since it was last recorded.
For example, metrics measuring request counts are delta metrics; each value records how many requests
were received since the last data point was recorded. The delta is always the end value minus start value.
Please be noted delta metric could be negative. Some other examples of a delta metric are the latency,
memory cost, and network I/O traffic.

Compared with Google and Prometheus’ definition, HiQ abs metric is equivalent to Google
and Prometheus’ s gauge metric, and HiQ’ s delta metric is equivalent to Google’ s delta and
cumulative metrics and Prometheus’ s counter.

Ref:
¢ https://prometheus.io/docs/concepts/metric_types/

12 Chapter 1. HiQ Background



HiQ - A Modern Observability System, Release 1.1.7

¢ https://cloud.google.com/monitoring/api/v3/kinds-and-types#metric-kinds

1.4 Application Performance Monitoring

APM (Application Performance Monitoring) provides a comprehensive set of features to monitor appli-
cations and diagnose performance issues. It has a very long history and covers very broad areas like
including hardware performance monitoring. Although the name has word monitoring inside, it is more
like an observability tool. It has become a profitable business for many companies and used frequently in
sales and marketing context, like this one: Application Performance Monitoring Tools Reviews 2021 by
Gartner. In early times, APM is more for monolitic applications, but now it has expanded to distributed
Systems.

1.5 Distributed Tracing

Distributed tracing, sometimes called distributed request tracing, is a method to monitor applications
built on a microservices architecture.

IT and DevOps teams use distributed tracing to follow the course of a request or transaction as it travels
through the application that is being monitored. This allows them to pinpoint bottlenecks, bugs, and
other issues that impact the application’ s performance.

In 2010, Google put online a paper, Dapper, a Large-Scale Distributed Systems Tracing Infrastructure,
which starts the new era of distributed tracing. 2019 started with the merge of OpenTracing and Open-
Census into OpenTelemetry, so that the industry started to have a unified standard for distributed tracing.
Now all APM vendors provide distributed tracing features.

1.4. Application Performance Monitoring 13


https://www.gartner.com/reviews/market/application-performance-monitoring
https://www.splunk.com/en_us/data-insider/what-are-microservices.html
https://research.google/pubs/pub36356/
https://opentelemetry.io/

HiQ - A Modern Observability System, Release 1.1.7

14 Chapter 1. HiQ Background



CHAPTER 2

HIQ CORE CONCEPTS

2.1 Target Code

The main program which we want to collect information about. It could be a runnable python code or a
module.

2.2 Driver Code

HiQ driver code is like agent in most APM applications, but there is a little difference. With agent, a
runnable application is needed, so that the agent can attach to it. But driver code can work with modules
too. For instance, you can write python function in driver code to call another target function in the
target module.

2.3 HiQ Tracing Class/Object

HiQ provides two Tracing Class out of the box: HiQLatency for latency tracing and HiQMemory for
memory tracing. You can derive from HiQSimple to have your own customized tracing. These classes
are called HLQ Tracing Class and the object is called HIQ Tracing Object.

15



HiQ - A Modern Observability System, Release 1.1.7

2.4 Lumberjack/Jack

LumberJack is a process to collect traces, HiQ trees in this case, to send to HiQ server. To enable Lumber-
Jack, set environment variable JACK to 1.

2.5 Log Monkey King

Log Monkey King is a process to write traditional semi-structured, append-only log into log files. To
enable Log Monkey King, set environment variable LMK to 1.

2.6 HiQ Tree

HiQ tree is a n-ary tree, plus a stack and dictionary/map. Different from the traditional BST, AVL, RB
Tree, the tree is a strictly insertion-time-ordered tree from top to bottom and from left to right, so you
can not switch the order of the nodes. The purpose of the tree is not for searching, or sorting. It is for
visualizing program execution and facilitating code optimization. The values inserted into the tree doesn’
t need to be monotonically increasing.

Every node in an HiQ tree has a start value and a end value. end value minus start value is equal to the
span of the node, or sometimes you can just call the node itself as a span to confirm with OpenTracing
conventions.

HiQ tree has three modes. When HiQ tree is in concise mode, which is the default mode, HiQ tree will
not contain ZSP(zero-span node). When the mode is verbose mode, HiQ tree can have ZSP if there is no
extra information in the node, like exception information. When the mode is debug, all the zero span
node will be recorded as well.

2.7 HiQ Conf

HiQ conf could be a text configuration file to specify the functions you want to trace. It can be json or
CSV file.

A sample json file is like:

[

{
"name": "f1",
"module": "my model2",
"function": "funcl",
"class": ""

}

{
"name": "f2",
"module": "my model2",
"function": "func2",

(continues on next page)

16 Chapter 2. HiQ Core Concepts




[ R = T 2 S SO JUR R

10

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

"class": ""

e

{
"name": "f3",
"module": "my model2",
"function": "func3",
"class": ""

s

{
"name": "f4",
"module": "my model2",
"function": "func4",
"class": ""

}

]

A sample csv file is like:

"my model2", "", "funcl", "f1"
"my model2", "", "func2", "f2"
"my model2", "", "func3", "f3"
"my model2", "", "func4", "f4"

Also you can also use a list of list to represent it. For example, an equivalent representation of the above

json and csv file is:

[
[Hmyimodelzu' uu' ufunclu’ uflu]’
[Hmy_modelzu' uu’ ufunczu’ ufzu]’
[Hmy_modelzu’ uu’ ufunc3u’ uf3u]’
[Hmy_modelzu’ uu’ ufunc4u’ uf4u]

]

The inner list must have length of 4. They are: [module name,
tag name]. The tag name will display in the HiQ as the tree node name.

The following example shows how to use HiQ conf.

Target Code

class name, function name,

import time

def funcl():
time.sleep(1.5)
print("funcl")
func2()

def func2():
time.sleep(2.5)
print("func2")

(continues on next page)

2.7. HiQ Conf

17




0w N o vt A W N =

T T S S et
AR W D = O ©

—
13

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def main():
funcl()

if npame == " main_ ":
main()

Driver Code:

import hiq
import os

here = os.path.dirname(os.path.realpath( file ))

def run main():
with hiq.HiQStatusContext(debug=True):
with hiq.HiQLatency(f"{here}/hiq.conf") as driver:
hig.mod("main").main()
driver.show()

if name == " main ":
run_main()

HIQ Conf:

Ilmainll’ n II’ Ilmainll’ Ilmainll

Ilmainll’ IIII’ Ilfunclll’ Ilfunclll

Ilmainll' Illl' Ilfunczll’ Ilfunczll

Run the driver code and you will get something like:

0 python hig/examples/conf/main driver.py
funcl
func2
[2021-11-03 22:51:08.946615

[2021-11-03 22:51:08.946615
[2021-11-03 22:51:08.946663
[2021-11-03 22:51:10.448407
—5026)

22:51:12.951082] [100.00%]
22:51:12.951069] [100.00%]
22:51:12.951018] [ 62.50%]

22:51:12.951082] [100.00%] [] root time(4.0045)

[OH:191us]
1 main(4.0045)
1  funcl(4.0044)
1 func2(2.

18 Chapter 2. HiQ Core Concepts




HiQ - A Modern Observability System, Release 1.1.7

2.8 Latency Overhead

All runtime monitoring has overhead, no matter latency or memory, CPU. In most cases, we care about
latency overhead. Different from all the open source projects in the community and the products in the
market, HiQ provides transparent latency overhead information out of the box.

In the quick start example, we can see the latency overhead is printed out under the tree’ s root node,
which is 163us, and equivalent to 0.04% of the total running time.

M python main_driver.py
funcl

func2

[2021-11-81 21:54:18.222424

[2021-11-81 21:54:18.222424
[2021-11-01 21:54:18.222472
[2021-11-01 21:54:19.724213

21:54:22.226879]

21:54:22.226879]
21:54:22.226868]
21:54:22.226818]

[100.00%] ® _root_time(4.0045)
[0H:163us]

[100.00%] 1___main(4.0045)

[100.00%)] 1__ funcl(4.0044)

[ 62.50%] 1__ func2(2.5026)

2.8. Latency Overhead

19



HiQ - A Modern Observability System, Release 1.1.7

20

Chapter 2. HiQ Core Concepts



© o N e G A W o =

CHAPTER 3

HIQ TRACING TUTORIAL

Latency tracing is always enabled as long as global HiQ status is on. Other than latency, HiQ provides
memory, disk I/O, network I/O, and Exception tracing out of the box.

3.1 Global HiQ Status

Global HiQ status is a cross-process boolean value that decide if HiQQ running in the current machine is
enabled or not. There are two functions to get and set the global HiQ status. You can get them from:

from hiq.higq_utils import get global hiq status, set global hig status

The following is the demo code:

from hiq.hiq_utils import get global hiq status, set global hiq status

if npame == " main
set global hig status(True)
b = get global hiq status()
print(b)

set global hig status(False)
b = get global hiq status()
print(b)

Run it and you will get:

0 python examples/hiq global status/demo.py
0 set global hig to True
True

(continues on next page)

21




s oW o e

S

© o =

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

00 set global hiq to False
False

If global HiQ status is False, all the HiQ in the machine is disabled. If it is True, you can call disable()
to disable a specific HiQ Object. This is so-called dynamic tracing.

Note: We assume global HiQ status is already set to True in this tutorial.

Normally you don’ t have to call them directly. Instead you use context manager hiq.
HiQStatusContext () to make sure the HiQ) status is on or off.

Tip: hiq.HiQStatusContext() is the best practice to use whenever possible.

3.2 Dynamic Tracing

HiQ tracing is dynamic, which means you can enable and disable it as needed. The following is a simple
example.

You can disable and enable HiQ) tracing at run time.

import hiq
import time

def run main():
# create an “hiq.HiQLatency' object and HiQ is enabled by default
with hiq.HiQStatusContext():
driver = hig.HiQLatency(
hiq table or path=[

[umainu’ uu’ umainu’ umainu]’
[umainu’ uu’ ufunclu’ ufunclu]’
[Ilmainll’ IIII’ Ilfunczll’ llfunczll]’

1
)
print("*" * 20, "HiQ is enabled", "*" * 20)
start = time.time()
hig.mod("main").main()
print(f"{time.time()-start} second")
driver.show()

# disable HiQ in ‘“driver’

print("*" * 20, "disable HiQ", "*" * 20)
driver.disable hiq(reset trace=True)
start = time.time()
hig.mod("main").main()
print(f"{time.time()-start} second")

(continues on next page)

22 Chapter 3. HiQ Tracing Tutorial




27
28
29
30
31
32
33
34
35
36
37
38
39

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

driver.show()

# enable HiQ in ‘driver’ again

print("*" * 20, "re-enable HiQ", "*" * 20)
driver.enable hiq(reset trace=True)

start = time.time()

hig.mod("main").main()
print(f"{time.time()-start} second")
driver.show()

if name == " main ":
run_main()

With this code above, we disable and enable HiQ tracing, and run the main () function. The result is like:

) HIQ_STATUS_CACHED=1 python examples/dynamic/main_driver.py
seicicloioioioliolioloololioliolk Hi is enabled sekkkksoioiooiokiohiohoololick
funcl

func2

4.0084539489746094 second
[2621-11-83 @@:32:52.871352

@09:32:56.875782] [100.00%] @ _root_time(4.0044)

[OH:279us]
[2621-11-83 @@:32:52.871352 - ©0B:32:56.875782] [100.00%] 1 main(4.0044)
[2621-11-83 @@:32:52.871442 - 00:32:56.875764] [100.00%] 1 funcl(4.00843)
[2621-11-83 @@:32:54.373086 - ©0B:32:56.875699] [ 62.50%] 1 func2(2.5826)
sk disable Hi sk
funcl
func2

4.8084141569137573 second
FrRdddiRiiRibiikiiss re—enable HiQ #eddddesdddddiiiiiis
funcl

func2

4.0084455804824829 second
[2821-11-03 @0:33:00.881389

009:33:04.885762] [100.00%] @_root_time(4.0044)

[OH:192us]
[2621-11-83 P@:33:00.881389 - ©0B:33:04.885762] [100.00%] 1 main(4.0044)
[2621-11-083 P@:33:00.881409 - 0B:33:04.885745] [100.00%] 1 funcl(4.00843)
[2621-11-83 P@:33:082.383P859 - PB:33:04.885686] [ 62.50%] 1 func2(2.5826)

The environment variable HIQ STATUS CACHED decide if the result is cached. If it is enabled, the result
will be cached for 5 seconds.

3.2. Dynamic Tracing 23




© 0 N o Gt ke W N =

e S T T e T =
®w N e o R W N o= O

© o N ot e W N =

—= = e
o= o

HiQ - A Modern Observability System, Release 1.1.7

3.3 Metrics Customization

HiQ supports metrics customization. You can choose to trace different metrics in HiQ tree.

3.3.1 ExtraMetrics

Now HiQ supports 3 types of customized metrics: ExtraMetrics.FILE, ExtraMetrics.FUNC, Ex-
traMetrics.ARGS. You can pass them in a set object to extra metrics in the constructor like below.
And of course, different metrics have different latency overheads, which you can find in HiQ tree as well.

Target Code

import time

def funcl(x, y):
time.sleep(1.5)
func2(y)

def func2(y):
time.sleep(2.5)

def main(x, y):

funcl(x, vy)
if name == " main ":
main(1l, 2)

Driver Code:

import hiq
import os
from hiq.constants import ExtraMetrics

here = os.path.dirname(os.path.realpath( file ))

def run main():
with hiqg.HiQStatusContext(debug=False):
driverl = hiq.HiQLatency(
f"{here}/hiq.conf",
extra metrics={ExtraMetrics.FILE},
)
hig.mod("main").main(1l, 2)
driverl.show()
driverl.disable hiq()

driver2 = hiq.HiQLatency(

(continues on next page)

24

Chapter 3. HiQ Tracing Tutorial




19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

f"{here}/hiq.conf",

extra metrics={ExtraMetrics.FUNC},
)
hig.mod("main").main(1l, 2)
driver2.show()
driver2.disable hiq()

driver3 = hiq.HiQLatency(
f"{here}/hiq.conf",
extra metrics={ExtraMetrics.ARGS},
)
hig.mod("main").main(1, 2)
driver3.show()
driver3.disable hiq()

driver4 = hiq.HiQLatency(
f"{here}/hiq.conf",
extra metrics={
ExtraMetrics.FILE,
ExtraMetrics.FUNC,
ExtraMetrics.ARGS,
}
)
hig.mod("main").main(1l, 2)
driver4.show()

if name == " main ":
run_main()

Note: If we create one more driver for the same target, we need to disable the previous driver by calling
driver.disable_hiq(), otherwise an exception will be raised.

Run this file and the output will be like:

0 python examples/extra/simple/main driver.py

[2021-11-07 19:46:47.464262 - 19:46:51.476240] [100.00%] [] root time(4.0120)
[OH:38767us]

[2021-11-07 19:46:47.464262 - 19:46:51.476240] [100.00%] 1 main(4.0120) ({

—'file': 'examples/extra/simple/main driver.py:10'})

[2021-11-07 19:46:47.466069 - 19:46:51.476229] [ 99.95%] 1  funcl(4.0102),
~({'file': 'examples/extra/simple/main.py:14'})

[2021-11-07 19:46:48.973780 - 19:46:51.476187]1 [ 62.37%] 1 func2(2.

-5024) ({'file': 'examples/extra/simple/main.py:6'})

[2021-11-07 19:46:51.478223 - 19:46:55.488515] [100.00%] [J root time(4.0103)

[OH:6217us]
[2021-11-07 19:46:51.478223 - 19:46:55.488515] [100.00%] 1 main(4.0103) ({
—'function': 'run main'})

(continues on next page)

3.3. Metrics Customization 25




0w N o ot A W N =

©

10

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

[2021-11-07 19:46:51.480468 - 19:46:55.488504] [ 99.94%] 1  funcl(4.0080),
< ({'function': 'main'})
[2021-11-07 19:46:52.985900 - 19:46:55.488467] [ 62.40%] 1 func2(2.

-5026) ({'function': 'funcl'})

[2021-11-07 19:46:55.490225 - 19:46:59.494639] [100.00%] [J root time(4.0044)

[OH:212us]
[2021-11-07 19:46:55.490225 - 19:46:59.494639] [100.00%] 1  main(4.0044) ({
~'args': '[int](1),[int](2)'})

[2021-11-07 19:46:55.490282 - 19:46:59.494629] [100.00%] 1 funcl(4.0043),
—({'args': '[int](1),[int](2)"})
[2021-11-07 19:46:56.992013 - 19:46:59.494591] [ 62.50%] 1 func2(2.

—5026) ({'args': '[int](2)'})

[2021-11-07 19:46:59.496759 - 19:47:03.512220] [100.00%] [J root time(4.0155)
[OH:9936us]
[2021-11-07 19:46:59.496759 - 19:47:03.512220] [100.00%] 1  main(4.0155) ({
—'args': '[int](1),[int](2)', 'file': 'examples/extra/simple/main driver.py:28',
< 'function': 'run_main'})
[2021-11-07 19:46:59.500252 - 19:47:03.512210] [ 99.91%] 1  funcl(4.0120),
—({'args': '[int](1),[int](2)"', 'file': 'examples/extra/simple/main.py:14',
—'function': 'main'})
[2021-11-07 19:47:01.010409 - 19:47:03.512170] [ 62.30%] 1 func2(2.
~5018) ({'args': '[int](2)', 'file': 'examples/extra/simple/main.py:6', 'function
't '"funcl'})

We can see when we enable ExtraMetrics. FILE, the file path and number name will be attached to the
tree node. When we enable ExtraMetrics . FUNC, the caller function name will be attached to the tree
node. When we enable Ext raMetrics.ARGS, the function argument type and value will be attached to
the tree node. If we enable all of them, all the information will be attached, but we got the largest latency
overhead.

3.3.2 Complex Data Type

Target Code

import time

def funcl(x, y, df):
time.sleep(1.5)
func2(y)

def func2(y):
time.sleep(2.5)

def main(x, y, df, lst, bytes, *args, **kwargs):
funcl(x, y, df)

26 Chapter 3. HiQ Tracing Tutorial




© o N e o A W o =

T e e
=W o = o

15
16
17
18

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

HiQ - A Modern Observability System, Release 1.1.7

Driver Code:

import hiq

import os

import numpy as np

import pandas as pd

import torch

from hiq.constants import ExtraMetrics

here = os.path.dirname(os.path.realpath( file ))

def run main():

a = torch.rand(2000, 3)

b = np.random.rand(3, 2000)

df = pd.DataFrame(np.random.randint(@, 100, size=(100, 4)), columns=1list("ABCD
(_)II))

series = pd.date range(start="2016-01-01", end="2020-12-31", freg="D")

with hiqg.HiQStatusContext (debug=False):
with hiq.HiQLatency(
f"{here}/hiq.conf",
extra metrics={ExtraMetrics.ARGS},
) as driver:
hig.mod("main") .main(
ar
br
df,
[11 21 3]1
b"abc",
st=set ({5, 6, 7}),
dt={"a": 1},
pd time=series,
)

driver.show()

if name ==
run _main()

__main_ ":

Run this file and the output will be like:

0 python examples/extra/complex/main driver.py

[2021-11-07 19:51:05.408034 - 19:51:09.412475] [100.00%] [J root time(4.0044)
[OH:260us]

[2021-11-07 19:51:05.408034 - 19:51:09.412475] [100.00%] 1 main(4.0044) ({

—'args': '[tensor](torch.Size([2000, 31)),[ndarryl((3, 2000)),[pandas]((100, 4)),

—[list<int>]1(3),[bytes](3)"', 'kwargs': "{\'st\': \'[set](3)\"', \'dt\': "[dict]([\

—~'a\'l)", \'pd time\': \'[DatetimeIndex](1827)\'}'})

[2021-11-07 19:51:05.408108 - 19:51:09.412463] [100.00%] 1 funcl(4.0044),

—~({'args': '[tensor](torch.Size([2000, 31)),[ndarry]((3, 2000)), [pandas]((100,,

~4))"'})

:51
1/ /(2 2000 1
PAVAV]

[2021-11-07 19:51:06.909852 - 19 :09.412425] [ 62.49%] 1 func2(2.
o)1)

ENOA) AN | P 1 Ll mal o imimn g
=2UZ0) (v args . 1naarryriis, (continues on next page)

3.3. Metrics Customization 27




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

HiQ can handle all python built in types and third-party module’ types including Pytorch tensor, Numpy
NDArray, Pandas DataFrame and Series.

3.3.3 Large Data Structure

Tracing large data structure like arrays could be a performance killer. It will take a lot of CPU and some
memory as well, and slow down the program. So this section is only recommended for use case where
performance requirement is not that critical.

By default, HiQ trace the type and value of function arguments. For composite data structures, it traces
the type and size instead of value. But sometimes, you may really need to know the data no matter
how big it is. In this case, you can pass your own function arguments handler When creating HiQ Tracing
Object.

With the same target code as above, we can have this driver code to save large data to hard disk:

import os
import pickle

import hiq

import numpy as np

import pandas as pd

import torch

from hiq.constants import ExtraMetrics
from hiq.utils import write file

here = os.path.dirname(os.path.realpath( file ))

def large data processor(x, func name=None) -> str:
if func name == " main":
if isinstance(x, tuple):
write file("/tmp/main.args.log", x[2].to string(), append=True)
elif isinstance(x, dict):
with open("/tmp/main.args.pkl", "wb") as handle:
pickle.dump(x, handle, protocol=pickle.HIGHEST PROTOCOL)
return "..."
else:
return hig.hiq utils.func args handler(x, func name)

def run main():

a = torch.rand(2000, 3)

b = np.random.rand(3, 2000)

df = pd.DataFrame(np.random.randint(0, 100, size=(100, 4)), columns=list("ABCD
"))

series = pd.date range(start="2016-01-01", end="2020-12-31", freg="D")

(continues on next page)

28 Chapter 3. HiQ Tracing Tutorial



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

with hiq.HiQStatusContext (debug=False):
with hiqg.HiQLatency(
f"{here}/hiq.conf",
extra metrics={ExtraMetrics.ARGS},
func_args handler=large data processor,
) as driver:
hig.mod("main") .main(
al
b’
df,
(1, 2, 31,
b"abc",
st=set ({5, 6, 7}),
dt={"a": 1},
pd time=series,
)

driver.show()

if  name " main_ ":

run_main()

Run the code and we’ 1l get something like:

[2021-11-08 00:17:23.378755 - 00:17:27.383362] [100.00%] [J root time(4.0046)
[OH:8027us]

[2021-11-08 00:17:23.378755 - 00:17:27.383362] [100.00%] 1 main(4.0046) ({

—'args': '...', 'kwargs': '...'})

[2021-11-08 00:17:23.378954 - 00:17:27.383350] [ 99.99%] 1  funcl(4.0044),

—({'args': '[tensor](torch.Size([2000, 31)),[ndarry]l((3, 2000)), [pandas]((100,,,

~4))"'})

[2021-11-08 00:17:24.880710 - 00:17:27.383292] [ 62.49%] 1 func2(2.

—5026) ({'args': '[ndarry]l((3, 2000))'})

The argument df has been saved into a file. To verify it:

0 cat /tmp/main.args.log |wc -1
100

The output 100 matches the row number 100 in line 29.
The entire kwargs has been pickled into /tmp/main.args.pkLl. To verify the values:

>>> import pickle
>>> x = pickle.load(open('/tmp/main.args.pkl','rb"'))
>>> X
{'st': {5, 6, 7}, 'dt': {'a': 1}, 'pd time': DatetimeIndex(['2016-01-01', '2016-
—01-02', '2016-01-03', '2016-01-04',
'2016-01-05', '2016-01-06', '2016-01-07', '2016-01-08°',
'2016-01-09', '2016-01-10',

'2020-12-22', '2020-12-23', '2020-12-24', '2020-12-25',

(continues on next page)

3.3. Metrics Customization 29




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

'2020-12-26"', '2020-12-27', '2020-12-28', '2020-12-29',
'2020-12-30', '2020-12-31'],
dtype='datetime64[ns]', length=1827, freq='D')}

3.4 Memory Tracing

import hiq
import os
from hiq.constants import KEY MEMORY, FORMAT DATETIME

here = os.path.dirname(os.path.realpath( file ))

def run main():
with hiqg.HiQStatusContext():
driver = hiq.HiQMemory(f"{here}/hiq.conf")
hig.mod("main").main()
driver.get metrics(metrics key=KEY MEMORY)[O].show()

if npame == " main_ ":
run_main()
Output:
0 python examples/memory/main driver.py
funcl
func2
[ 19.457 - 19.461] [100.00%] [J root get memory mb(0.0039)
[ 19.457 - 19.461] [100.00%] 1 main(06.0039)

The memory here means RSS memory. From the example above, we can see the memory is increased from
19.457MB to 19.461MB before and after the main function invocation. And the two functions funcl and
func2 don’ t consume extra memory because we don’ t see them in the output. The reason why we don’
t see them is they are zero span node.

3.4.1 Timestamp With Non-latency Metrics

Unlike the latency metrics, memory is not related to time, so we don’ t see any timestamp in above output,
which is not convenient for our debugging. For non-latency metrics, to get timestamp in the output, we
should add attach timestamp=Truein hiq.HiQMemory’ s constructor.

Note: This works for all non-latency metrics like memory, disk I/O, network I/O etc.

30 Chapter 3. HiQ Tracing Tutorial




© o N o Ct ke W N =

Y U
L S SO TR NCR S

© o N o Gl e W N e

== =
o= O

13
14

16

HiQ - A Modern Observability System, Release 1.1.7

import hiq
import os
from hiq.constants import KEY MEMORY, FORMAT DATETIME

here = os.path.dirname(os.path.realpath( file ))

def run main():
with hiqg.HiQStatusContext():
driver = hiq.HiQMemory(f"{here}/hiq.conf", attach timestamp=True)
hiqg.mod("main") .main()
driver.get metrics(metrics key=KEY MEMORY)[O].show()

if  name " main_":

run_main()

The result becomes:

$ python examples/memory/main driver2.py
funcl
func2

[ 219.582 - 219.590] [100.00%] [0 _
—root get memory mb(0.0078)
[1636877696.769 - 1636877700.774]1 [ 219.582 - 219.590] [100.00%] 1
< main(0.0078)

We can change the date time format by specify time format=FORMAT DATETIME in the show func-
tion. The new driver code is like

import hiq
import os
from hiq.constants import KEY MEMORY, FORMAT DATETIME

here = os.path.dirname(os.path.realpath( file ))

def run main():
with hiq.HiQStatusContext():
driver = hiq.HiQMemory (f"{here}/hiq.conf", attach timestamp=True)
hig.mod("main") .main()
driver.get metrics(metrics key=KEY MEMORY)[O].show(time format=FORMAT
—DATETIME)

if name == " main_ ":
run_main()

In the new output below, we can see the datetime time format has changed:

$ python examples/memory/main driver3.py
funcl

(continues on next page)

3.4. Memory Tracing 31




© o N o wt ke W N =

T e =
N I =S

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

func2

[ 219.500 - 219.508] [100.
—00%] [] root get memory mb(0.0078)
[2021-11-14 08:18:02.419058 - 08:18:06.423343] [ 219.500 - 219.508] [100.

—00%] 1 main(0.0078)

3.5 Disk 1/0 Tracing

Target Code:

import os, time
from hiq.utils import execute cmd, random str

def create and read(k=102400):
time.sleep(2)
~100mb file = "/tmp/" + random str() + ".bin"
if not os.path.exists( 100mb file):
execute cmd(
f'"dd if=/dev/zero of={ 100mb file} bs=1024 count={k}", verbose=False
)
with open( 100mb file) as f:
s = f.read()
print(f"[Q read file size: {len(s)} bytes")

def funl():
time.sleep(2)
create and read(k=3)
fun2 ()

def fun2():
time.sleep(1l)
create and read(k=2)

def main():
funl()

if name == " main_ ":
main()

Driver Code:

import hiq
from hiq.constants import *

(continues on next page)

32 Chapter 3. HiQ Tracing Tutorial



© 0w N o wn

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def run main():
with hiqg.HiQStatusContext():
driver = hig.HiQLatency(
hiq table or path=[

[Ilmainll’ IlIl’ Ilmainll’ Ilmainll]’

["main", "", "create and read", "cr"],
[Ilmainll’ IIII’ Ilfunlll’ Il-f:lll]’

[Ilmainll’ IIII’ Ilfun2Il’ IIf2II]’

Iy

extra hiq table=[TAU TABLE DIO RD],
)
hig.mod("main").main()
driver.show()

if name == " main
run_main()

Run the driver code and get the output:

0 python hig/examples/io disk/main driver.py

0 read file size: 3072 bytes

[] read file size: 2048 bytes

[2021-11-03 22:45:37.416571 - 22:45:44.432328] [100.00%] [J root time(7.0158)
[OH:552us]

0%] 1  main(7.0158)

0%] 1 f1(7.0157)

[2021-11-03 22:45:37.416571 - 22:45:44.432328] [100.0
[2021-11-03 22:45:37.416641 - 22:45:44.432315] [100.0
5
0

[2021-11-03 22:45:39.418850 - 22:45:41.424977] [ 28.59%] | _cr(2.0061)
[2021-11-03 22:45:41.424852 - 22:45:41.424904] [ 0.00%] | 1 dio r(o.
—0001)

[2021-11-03 22:45:41.425046 - 22:45:44.432301] [ 42.86%] 1 f2(3.0073)
[2021-11-03 22:45:42.426265 - 22:45:44.432281] [ 28.59%] 1 cr(2.
—.0060)

[2021-11-03 22:45:44.432160 - 22:45:44.432212] [ 0.00%] 1  dio_
~r(0.0001)

[ 0.000 - 5120.000] [100.00%] [J root get io bytes r(5120.0000)

[ 0.000 - 5120.000] [100.00%] 1  main(5120.0000)

[ 0.000 - 5120.000] [100.00%] 1 f1(5120.0000)

[ 0.000 - 3072.000] [ 60.00%] | cr(3072.0000)

[ 0.000 - 3072.000] [ 60.00%] | 1 ~_dio r(3072.0000)

[3072.000 - 5120.000] [ 40.00%] 1 f2(2048.0000)

[3072.000 - 5120.000] [ 40.00%] 1 cr(2048.0000)

[3072.000 - 5120.000] [ 40.00%] 1 dio r(2048.0000)

3.5. Disk I/O Tracing 33



© o N e T A W o =

e
- o

12

s T = O I

HiQ - A Modern Observability System, Release 1.1.7

3.6 System 1/O Tracing

The following target code creates a 3KB file in funl() and a 2KB file in fun2 () and then use 0s . read,
which invokes linux system call read (), to read 50 bytes through file descriptor. HiQ can trace the I/O
traffic of linux system call read () andwrite().

Target Code

import os, time
from hiq.utils import execute cmd, random str

def create and read(k=102400):
time.sleep(2)
~100mb_file = "/tmp/" + random str() + ".bin"
if not os.path.exists( 100mb file):
execute cmd(
f'"dd if=/dev/zero of={ 100mb file} bs=1024 count={k}", verbose=False
)
fd = os.open( 100mb file, o0s.0 RDONLY)
readBytes = os.read(fd, 50)
os.close(fd)

def funl():
time.sleep(2)
create and read(k=3)
fun2()

def fun2():
time.sleep(1)
create and read(k=2)

def main():
funl()

if name == " main ":
main()

We can trace the system I/O by adding HIQ TABLE SIO RD forread or HIQ TABLE SIO WT for write
The following is the driver code

import hiq
from hiqg.constants import HIQ TABLE SIO RD

def run main():
with hiq.HiQStatusContext():
driver = hiq.HiQLatency(

(continues on next page)

34 Chapter 3. HiQ Tracing Tutorial



HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

hiq table or path=][
["main", nn "main", "main"],

["main", "", "create and read", "cr"],
[Ilmainll’ IIII’ Ilfunlll’ Ilflll]’
[Ilmainll’ IlII’ Ilfunzll’ Ilf2ll]’

Il

extra hiq table=[HIQ TABLE SIO RD],
)
hig.mod("main").main()
driver.show()

if name == " main_
run_main()

Run the driver code and get the output:

0 python examples/io sys/main driver.py

[2021-11-04 02:56:27.995306 - 02:56:35.008258] [100.0

0%] [0 root time(7.0130)

[OH:896us]

[2021-11-04 02:56:27.995306 - 02:56:35.008258] [100.00%] 1 main(7.0130)

[2021-11-04 02:56:27.995369 - 02:56:35.008245] [100.00

] 1 f1(7.0129)

[2021-11-04 02:56:29.997583 - 02:56:32.002374] [ 28.59%] | cr(2.0048)
[2021-11-04 02:56:32.001401 - 02:56:32.001539] [ 0.00%] | 1 sio r(o.
-.0001)

[2021-11-04 02:56:32.002117 - 02:56:32.002136] [ 0.00%] | | sio r(o.
—.0000)

[2021-11-04 02:56:32.002340 - 02:56:32.002354] [ 0.00%] | 1 _ sio r(o.
-.0000)

[2021-11-04 02:56:32.002420 - 02:56:35.008234] [ 42.86%] 1 f2(3.0058)
[2021-11-04 02:56:33.003664 - 02:56:35.008218] [ 28.58%] 1 cr(2.
.0046)

[2021-11-04 02:56:35.007247 - 02:56:35.007400] [ 0.00%] | sio_
~.r(0.0002)

[2021-11-04 02:56:35.007963 - 02:56:35.007983] [ 0.00%] | sio_
—.r(0.0000)

[2021-11-04 02:56:35.008180 - 02:56:35.008200] [ 0.00%] 1 sio
~.r(0.0000)

[0.000 - 100.000] [100.00%] [J root get sio bytes r(100.0000)

[0.000 - 100.000] [100.00%] 1447main(106.0000)

[0.000 - 100.000] [100.00%] 1 f1(100.0000)

[0.000 - 50.000] [ 50.00%] | cr(560.0000)

[0.600 - 50.000] [ 50.00%] | 1 _ sio r(50.0000)
[50.000 - 100.000] [ 50.00%] 1 f2(50.0000)

[50.000 - 100.000] [ 50.00%] 1 cr(50.0000)
[50.000 - 100.000] [ 50.00%] 1 sio r(50.0000)

3.6. System 1/O Tracing

35




© o N o Gl e W N e

=
S

11

HiQ - A Modern Observability System, Release 1.1.7

3.7 Network 1/0 Tracing

Target Code

import os
import time
from hiq.utils import execute cmd, random str, download from http

count = 0

here = os.path.dirname(os.path.realpath( file ))

def create and read(k=102400):
~100mb_file = "/tmp/" + random str() + ".bin"
if not os.path.exists( 100mb file):
execute cmd(f"dd if=/dev/zero of={ 100mb file} bs=1024 count={k}")
with open( 100mb file) as f:
s = f.read()
print(f"Q file size: {len(s)}, {sllen(s) // 2 - 11}")

def funcl():

global count

if count ==
create and read(1024 * 10)
count += 1
return

elif count > 5:
return

count += 1

func4()

# print("funcl")

def func2():
# print("func2")
time.sleep(0.1)
funcl()

def func3():
# print("func3")
time.sleep(0.12)
func2()

def func4():
# print("func4")
if count == 0:
create and read(1024 * 50)
if count == 3:

(continues on next page)

36 Chapter 3. HiQ Tracing Tutorial



49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

download from http(

"https://www.gardeningknowhow.com/wp-content/uploads/2017/07/hardwood-

~tree.jpg",
"/tmp/tree.jpg",
)
time.sleep(0.2)
func2()
func3()

def func5():
time.sleep(0.24)
# print("let func5 raise exception")
# raise Exception("o")

def fit(model="awesome model", data="awesome data"):
print(f"{data=}, {model=}")
time.sleep(0.35)
func4()

def predict(model="awesome model", data="awesome data"):
print(f"{data=},{model=}")
time.sleep(0.16)
func5()

def main():
fit(model="awesome model 1", data="awesome data 1")
predict(model="awesome model 2", data="awesome data 2")

if npame == " main_ ":
main()

In func4 (), when global variable count is equal to 3, it will download an image from the internet.

3.7. Network 1/O Tracing

37




© o N Gt ke W N e

I - s T e =
[ N L S TR CR S )

HiQ - A Modern Observability System, Release 1.1.7

The image size is 199602 bytes as displayed below:

-rw-rw-r-- 1 ubuntu ubuntu 199602 May 13 2018 hardwood-tree.jpg

Driver Code:

import hiq

from hiq.constants import *

def run_main():

with hiq.HiQStatusContext():
driver = hiqg.HiQLatency(
hiq table or path=[

[Ilmainll’ mn
[Ilmainll’ nn
["main",
[IlmainII’ nn
[Ilmainll' mn
[Ilmainll’ mn

]I

extra hiq table=[TAU TABLE NIO GET],

)

’
’
r
’
’
’

"main",

"funcl",
"func2",
"func3",
"func4",
"funch5",

hig.mod("main").main()

"main"],
"funcl"],
"func2"],
"func3"],
"func4"],
"func5"],

(continues on next page)

38

Chapter 3. HiQ Tracing Tutorial




19
20
21
22
23

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

driver.show()

if  name " main_ ":

run_main()

Notice at line 15, we added a new line to track network ingress I/O. To track the egress traffic, you just
need to replace TAU TABLE NIO GET with TAU TABLE NIO WRT.

Output:

[2021-11-03 08:25:53.510876

08:25:57.561308] [100.00%] [J root time(4.0504)
[OH:2074us]
[2021-11-03 08:25:53.510876 - 08:25:57.561308] [100.00%] 1  main(4.0504)

[2021-11-03 08:25:53.861402 - 08:25:57.160576] [ 81.45%] | func4(3.2992)
[2021-11-03 08:25:54.183760 - 08:25:56.940055] [ 68.05%] | | func2(2.
.7563)

[2021-11-03 08:25:54.283967 - 08:25:56.940045] [ 65.58%] | | 1_ funcl(2.
~.6561)

[2021-11-03 08:25:54.284018 - 08:25:56.940032] [ 65.57%] | 1

—func4(2.6560)
[2021-11-03 08:25:54.484393 - 08:25:56.719469] [ 55.18%] [ ] |
—func2(2.2351)

[2021-11-03 08:25:54.584729 - 08:25:56.719449] [ 52.70%] [ ] | 1
< funcl(2.1347)
[2021-11-03 08:25:54.584799 - 08:25:56.719430] [ 52.70%] [ ] | "

1 func4(2.1346)
[2021-11-03 08:25:54.785170 - 08:25:56.498725] [ 42.31%] | ] |
func2(1.7136)

—

[2021-11-03 08:25:54.885402 - 08:25:56.498709] [ 39.83%] [ ] | "
< | 1  funcl(1.6133)

[2021-11-03 08:25:54.885453 - 08:25:56.498696] [ 39.83%] | ] | U
. 1 func4(1.6132)

[2021-11-03 08:25:54.885522 - 08:25:54.906254] [ 0.51%] [ ] | "
< | nio get(0.0207)

[2021-11-03 08:25:55.106743 - 08:25:56.278137] [ 28.92%] | ] | U
< |  func2(1.1714)

[2021-11-03 08:25:55.206995 - 08:25:56.278122] [ 26.44%] | ] | "
- | 1  funcl(1.0711)

[2021-11-03 08:25:55.207054 - 08:25:56.278107] [ 26.44%] | | "
- | 1  func4(1.0711)

[2021-11-03 08:25:55.407383 - 08:25:56.057437] [ 16.05%] [ ] | U

- | | func2(0.6501)
[2021-11-03 08:25:55.507616 - 08:25:56.057420] [ 13.57%] | |
- | | 1 funcl(0.5498)

[2021-11-03 08:25:55.507676 - 08:25:56.057403] [ 13.57%] | | .
- | | 1 func4(0.5497)

[2021-11-03 08:25:55.708037 - 08:25:55.836658]

- | | | func2(0.1286
[2021-11-03 08:25:55.808240 - 08:25:55.836573] .70%] | | .

3.18%] | | .

[2021-11-03 08:25:55.836824 - 08:25:56.057387] 45%] [ ] | "

[

)

[ 0
| | | 1 funcl(0.0283)

[ 5.

)

o | | 1 func3(0.2206

(continues on next page)

3.7. Network 1/O Tracing 39




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

| I u
| I u
] | u

1  func5(0.2403)

1 func2(199602.0000)
1 funcl(199602.0000)
1 func4(199602.0000)
1 func2(199602.0000)
1 funcl(199602.0000)

1 func4(199602.0000)

1 func2(199602.
1 funcl(199602.

1

[2021-11-03 08:25:55.957082 - 08:25:56.057372] [ 2.48%]
< | | 1 func2(0.1003)
[2021-11-03 08:25:56.057324 - 08:25:56.057343] [ 0.00%]
o | | 1 funcl(0.0000)
[2021-11-03 08:25:56.057490 - 08:25:56.278093] [ 5.45%]
o | | 1 func3(0.2206)

[2021-11-03 08:25:56.177766 - 08:25:56.278078] [ 2.48%]
o | 1 func2(0.1003)

[2021-11-03 08:25:56.278022 - 08:25:56.278050] [ 0.00%]
- | 1 funcl(0.0000)
[2021-11-03 08:25:56.278194 - 08:25:56.498680] [ 5.44%]
o 1 func3(0.2205)

[2021-11-03 08:25:56.398421 - 08:25:56.498667] [ 2.47%]
< 1 func2(0.1002)

[2021-11-03 08:25:56.498626 - 08:25:56.498643] [ 0.00%]
o 1 funcl(0.0000)

[2021-11-03 08:25:56.498771 - 08:25:56.719408] [ 5.45%]
—~ 1 func3(0.2206)

[2021-11-03 08:25:56.619078 - 08:25:56.719386] [ 2.48%]
< 1 func2(0.1003)

[2021-11-03 08:25:56.719326 - 08:25:56.719350] [ 0.00%]
o 1 funcl(0.0000)

[2021-11-03 08:25:56.719543 - 08:25:56.940020] [ 5.44%]
—func3(0.2205)

[2021-11-03 08:25:56.839789 - 08:25:56.940008] [ 2.47%]
— func2(0.1002)

[2021-11-03 08:25:56.939970 - 08:25:56.939986] [ 0.00%]
~1  funcl(0.0000)

[2021-11-03 08:25:56.940103 - 08:25:57.160563] [ 5.44%]
-2205)

[2021-11-03 08:25:57.060336 - 08:25:57.160552] [ 2.47%]
-1002)

[2021-11-03 08:25:57.160520 - 08:25:57.160533] [ 0.00%]
—funcl(0.0000)

[2021-11-03 08:25:57.320969 - 08:25:57.561265] [ 5.93%]
[ 0.000 - 199602.000] [100.00%] [J root get nio bytes r(199602.0000)
[ 0.000 - 199602.000] [100.00%] 1 main(199602.0000)
[ 0.000 - 199602.000] [100.00%] 1 func4(199602.0000)
[ 0.000 - 199602.000] [100.00%]

[ 0.000 - 199602.000] [100.00%]

[ 0.000 - 199602.000] [100.00%]

[ 0.000 - 199602.000] [100.00%]

[ 0.000 - 199602.000] [100.00%]

[ 0.000 - 199602.000] [100.00%]

[ 0.000 - 199602.000] [100.00%]

—0000)

[ 0.000 - 199602.000] [100.00%]

-0000)

[ 0.000 - 199602.000] [100.00%]

—func4(199602.00600)

[  0.000 - 199602.000] [100.00%]

1  nio_

-0et(199602.0000)

(continues on next page)

40

Chapter 3. HiQ Tracing Tutorial




© o N o wt ke W o =

T e =
N I =S

0w N e o A W o =

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

We can see from the HiQ tree, network I/O get function nio get () is called by called func4 and the
network traffic is 199602 bytes, and the downloading took 20.7 milliseconds.

3.8

Exception Tracing

HiQ provides exception tracing out of the box. By default, HiQ will populate the exception out until you
catch it.

Target Code

import time

def

def

def

funcl():
time.sleep(1.5)
print("funcl")
func2()

func2():

time.sleep(2.5)

print("func2")

raise ValueError("an exception")
func3()

func3():
time.sleep(2.5)
print("func3")

def main():
funcl()

if name == " main_ ":
main()

Driver Code 1:

import hiq
import os

here

def

= os.path.dirname(os.path.realpath(

run_main():
with hiq.HiQStatusContext():

_ file ))

(continues on next page)

3.8.

Exception Tracing

41



© 0 N e T A W N =

[ T e S S S
T W N = O

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

driver = hiq.HiQLatency(f"{here}/hiq.conf")
try:
hig.mod("main").main()
except Exception as e:
print(e)
driver.show()

if name == " main_ ":
run_main()
Output:
0 python examples/exception/main driver.py
funcl
func2

an_exception

[2021-11-03 17:17:03.547380 - 17:17:07.551894] [100.00%] [] root time(4.0045)
[OH:121us]

[2021-11-03 17:17:03.547380 - 17:17:07.551894] [100.00%] 1  main(4.0045) ({

— 'exception summary': ValueError('an exception')})

[2021-11-03 17:17:03.547442 - 17:17:07.551874] [100.00%] 1  funcl(4.0044),
—({'exception summary': ValueError('an exception')})
[2021-11-03 17:17:05.049179 - 17:17:07.551824] [ 62.50%] 1 func2(2.

—5026) ({'exception summary': ValueError('an exception')})

You can also specify fast fail=False when creating the HiQ object like hiq.HiQLatency, so that
the exception will be silent and you get a concise HiQ tree.

Driver Code 2:

import hiq
import os

here = os.path.dirname(os.path.realpath( file ))

def run main():
with hig.HiQStatusContext():
driver = hiq.HiQLatency(f"{here}/hiq.conf", fast fail=False)
hig.mod("main").main()
driver.show()

if name == " main_ ":
run_main()
Output:

0 python examples/exception/main driver2.py
funcl

(continues on next page)

42 Chapter 3. HiQ Tracing Tutorial




© o N ke W N =

R =
w o = O

14

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

func?
[2021-11-03 17:22:18.648640

17:22:22.652281] [100.00%] [J root time(4.0036)
[OH:193us]
17:22:22.652281] [100.00%] 1 main(4.0036)
17:22:22.652268] [100.00%] 1 funcl(4.0036)
17:22:22.652231]1 [ 62.49%] 1 func2(2.

[2021-11-03 17:22:18.648640
[2021-11-03 17:22:18.648686
[2021-11-03 17:22:20.150435
~5018)

3.9 Multiple Tracing

When HiQ is enabled and we call the target code more than one times, we will get multiple tracing results.

Target Code:

import os
import time

from hiq.utils import download from http, execute cmd, random str

count = 0

def create and read(k=102400):

_106mb_file = "/tmp/" + random str() + ".bin"

if not os.path.exists( 100mb file):
execute cmd(

f'"dd if=/dev/zero of={ 100mb file} bs=1024 count={k}", verbose=False

)

with open( 100mb file) as f:
s = f.read()

def funcl():

global count

if count ==
create and read(1024 * 10)
count += 1
return

elif count > 5:
return

count += 1

funcd ()

def func2():
time.sleep(0.1)
funcl()

(continues on next page)

3.9. Multiple Tracing 43




36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

oW o

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def func3():
time.sleep(0.12)
func2()

def func4():
if count ==
create and read(1024 * 5)
if count == 3:
download from http(
"https://www.gardeningknowhow.com/wp-content/uploads/2017/07/hardwood-
~tree.jpg",
"/tmp/tree.jpg",
)
time.sleep(0.2)
func2()
func3()

def func5():
time.sleep(0.24)

def fit(model="awesome model", data="awesome data"):
time.sleep(0.35)
func4()

def predict(model="awesome model", data="awesome data"):
time.sleep(0.16)
func5()

def main():
for i in range(4):
fit(data={}, model=[i])
predict(model=f"awesome model {i}", data=i)

if name == " main_ ":
main()

Driver Code:

import os

import hiq

import traceback, sys

from hiq.hiq_utils import get global hiq status, set global hiq status,,
—HiQIdGenerator

from unittest.mock import MagicMock

(continues on next page)

44 Chapter 3. HiQ Tracing Tutorial




© o N o

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

here = os.path.dirname(os.path.realpath( file ))

def run main():
g driver original = get global hiq status()
set global hig status(True)
driver = hiq.HiQLatency(
hiq table or path=f"{here}/hiq.conf",
max_hiq size=4,

)

for i in range(3):
driver.get tau id = HiQIdGenerator()
try:
hig.mod("main").fit(data={}, model=[1i])
except Exception as e:
traceback.print exc(file=sys.stdout)
driver.show(show key=True)

driver.disable hiq()

print("-~" * 20, "disable HiQ", "-~" * 20)
hig.mod("main").fit(data={}, model=[i])
set global hiq status( g driver original)

if npame == " main_":
run_main()

From line 1 to 5: import necessary modules and functions. get global hiq status and
set global hiq status are used to get and set the global hiq status. If the status is on, HiQ will
function; if off, HiQ will stop working but you can still run the program.

Line 7: get the current directory path.
Line 10: define a function called run_main.
Line 11 to 12: back up the original HiQ status and set it to True

Line 13 to 16: create an object driver which has a type of class hiq.HiQLatency. hiq.HiQLatency
is for latency tracking. We have higq.HiQMemory to track both latency and memory. Users can also
inherit hig.HiQSimple to customize the metrics they want to track, but that is an advanced topics. For
now, in this case, we just need hiq.HiQLatency to track latency.

Line 18 to 20: run the target code main.py’ s function fit () for 3 times.
Line 21: print the latency traces as trees.

Line 23: disable HiQ

Line 25: run target code main.py’ s function fit () once again.

Line 26: set the global hiq status back to what it was before this run

Run the driver code, you can get result like:

3.9. Multiple Tracing 45




HiQ - A Modern Observability System, Release 1.1.7

0 python examples/multi-tracing/main driver.py

[0 set global hig to True

0 ko: 0, 0 k1: time
[2021-11-03 19:38:38.528194 - 19:38:41.750020] [100.00%] [] root time(3.2218)
[OH:3242us]
[2021-11-03 19:38:38.528194 - 19:38:41.750020] [100.00%] 1 f4(3.2218)
[2021-11-03 19:38:38.745514 - 19:38:41.529168] [ 86.40%] |  f2(2.7837)
[2021-11-03 19:38:38.845949 - 19:38:41.529151] [ 83.28%] | 1 f1(2.6832)
[2021-11-03 19:38:38.846075 - 19:38:41.529131] [ 83.28%] | 1 f4(2.
—6831)
[2021-11-03 19:38:39.046535 - 19:38:41.308501] [ 70.21%] | | f2(2.
—2620)
[2021-11-03 19:38:39.146943 - 19:38:41.308482] [ 67.09%] | | U
~f1(2.1615)
[2021-11-03 19:38:39.147045 - 19:38:41.308462] [ 67.09%] | | 1
— f4(2.1614)
[2021-11-03 19:38:39.347496 - 19:38:41.087750] [ 54.01%] | [ U
f2(1.7403)
[2021-11-03 19:38:39.447848 - 19:38:41.087731] [ 50.90%] | [ U
—~| 1 __ f1(1.6399)
[2021-11-03 19:38:39.447920 - 19:38:41.087709] [ 50.90%] | | "
< 1 f4(1.6398)
[2021-11-03 19:38:39.694061 - 19:38:40.866945] [ 36.40%] [ [ U
< |  f2(1.1729)
[2021-11-03 19:38:39.794394 - 19:38:40.866924] [ 33.29%] | | u
< | 1  f1(1.0725)
[2021-11-03 19:38:39.794470 - 19:38:40.866904] [ 33.29%] | | s
1 f4(1.0724)
[2021 11-03 19:38:39.994862 - 19:38:40.646264] [ 20.22%] | [ U
| f2(0.6514)

[2021—11—03 19:38:40.095094 - 19:38:40.646241] [ 17.11%] | | "
- | 1  f1(0.5511)
[2021-11-03 19:38:40.095146 - 19:38:40.646216] [ 17.10%] | [ U
- | 1 f4(0.5511)
[2021-11-03 19:38:40.295571 - 19:38:40.425075] [ 4.02%] | [ U
< | | |  f2(0.1295)
[2021-11-03 19:38:40.395917 - 19:38:40.424979] [ 0.90%] | | "
- | 1  f1(0.0291)
[2021-11-03 19:38:40.425275 - 19:38:40.646194] [ 6.86%] [ [ U
- 1 f3(0.2209)
[2021-11-03 19:38:40.545736 - 19:38:40.646169] [ 3.12%] | | u
< 1 f2(0.1004)
[2021-11-03 19:38:40.646097 - 19:38:40.646127] [ 0.00%] | | o
- 1 f1(0.0000)
[2021-11-03 19:38:40.646342 - 19:38:40.866882] [ 6.85%] | [ U
< | 1 f3(0.2205)
[2021-11-03 19:38:40.766563 - 19:38:40.866861] [ 3.11%] | | "
- 1 f2(0.1003)
[2021-11-03 19:38:40.866809 - 19:38:40.866829] [ 0.00%] | [ U
- 1 f1(0.0000)
[2021-11-03 19:38:40.867007 - 19:38:41.087684] [ 6.85%] [ [ U
< | 1 f3(0.2207)

(continues on next page)
46 Chapter 3. HiQ Tracing Tutorial




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

[2021-11-03 19:38:40.987283 - 19:38:41.087656] [ 3.12%] | | o
1 f2(0.1004)
[2021 11-03 19:38:41.087594 - 19:38:41.087622] [ 0.00%] | | o
1 f1(0.0000)
[2021 11-03 19:38:41.087820 - 19:38:41.308437] [ 6.85%] | | "

-1 £3(0.2206)
[2021-11-03 19:38:41.208148
~ 1 f2(0.1003)

19:38:41.308417] [ 3.11%] | |

[2021-11-03 19:38:41.308362 - 19:38:41.308385] [ 0.00%] | | .
- 1 f1(0.0000)

[2021-11-03 19:38:41.308562 - 19:38:41.529113] [ 6.85%] | 1 f3(0.
-.2206)

[2021-11-03 19:38:41.428829 - 19:38:41.529091] [ 3.11%] | (s
.f2(0.1003)

[2021-11-03 19:38:41.529046 - 19:38:41.529062] [ 0.00%] | 1

~ f1(0.0000)

[2021-11-03 19:38:41.529225 - 19:38:41.749990] [ 6.85%] 1 f3(0.2208)
[2021-11-03 19:38:41.649575 - 19:38:41.749968] [ 3.12%] 1 f2(0.1004)
[2021-11-03 19:38:41.749906 - 19:38:41.749931] [ 0.00%] 1 f1(0.

—0000)

0 kO: 1, [J k1: time

[2021-11-03 19:38:42.101156 - 19:38:42.622677] [100.00%] [J root time(0.5215)
[OH:546us]

[2021-11-03 19:38:42.101156 - 19:38:42.622677] [100.00%] 1 f4(0.5215)

[2021-11-03 19:38:42.301611 - 19:38:42.401940] [ 19.24%] |  f2(0.1003)

[2021-11-03 19:38:42.401887 - 19:38:42.401910] [ 0.00%] | 1 f1(0.06000)

[2021-11-03 19:38:42.402009 - 19:38:42.622652] [ 42.31%] 1 £3(0.2206)

[2021-11-03 19:38:42.522245 - 19:38:42.622633] [ 19.25%] 1 f2(0.1004)
[2021-11-03 19:38:42.622575 - 19:38:42.622600] [ 0.00%] 1 f1(0.
—0000)

0 kO: 2, [0 k1: time

[2021-11-03 19:38:42.973617 - 19:38:43.495121] [100.00%] [] root time(0.5215)
[OH:527us]

[2021-11-03 19:38:42.973617 - 19:38:43.495121] [100.00%] 1 f4(0.5215)

[2021-11-03 19:38:43.173992 - 19:38:43.274265] [ 19.23%] |  f2(0.1003)
[2021-11-03 19:38:43.274217 - 19:38:43.274235] [ 0.00%] | 1 f1(0.0000)
[2021-11-03 19:38:43.274325 - 19:38:43.495096] [ 42.33%] 1 f3(0.2208)
[2021-11-03 19:38:43.394686 - 19:38:43.495076] [ 19.25%] 1 f2(0.1004)
[2021-11-03 19:38:43.495018 - 19:38:43.495043] [ 0.00%] 1 f1(0.
—0000)

0 set global hig to True

Note at line 16 above, we mocked driver.get tau id’sreturn value. In production or a more realistic
setup, you don’ t have to do the mock, because HiQLatency will generate id for every instantiation
automatically. The driver code will be like this:

3.9. Multiple Tracing 47




© o N o Ct ke W N =

=
St R S

HiQ - A Modern Observability System, Release 1.1.7

import os

import hiq

import traceback, sys

from hiq.hiq_utils import (
HiQIdGenerator,
HiQStatusContext,

)

here = os.path.dirname(os.path.realpath( file ))

def run main():
with HiQStatusContext():
for i in range(3):
with hiq.HiQLatency(hiq table or path=f"{here}/hiq.conf") as driver:

try:
hig.mod("main").fit(data={}, model=[1i])

except Exception as e:
traceback.print exc(file=sys.stdout)

finally:
driver.show(show key=True)

if name == " main ":
run_main()

Tip: Using HiQLatency in a with statement is recommended, because this way you don’ t have to man-
ually call driver.disable_hiq().

Run the code and the result is like:

0 python examples/multi-tracing/main driver real.py

0 k0: 16363948034575320, [J k1l: time

[2021-11-08 18:06:43.809487 - 18:06:47.034452] [100.00%] [J root time(3.2250)
[OH:1309us]

[2021-11-08 18:06:43.809487 - 18:06:47.034452] [100.00%] 1 f4(3.2250)

[2021-11-08 18:06:44.028084 - 18:06:46.813921] [ 86.38%] | f2(2.7858)
[2021-11-08 18:06:44.128282 - 18:06:46.813914] [ 83.28%] | 1 f1(2.6856)
[2021-11-08 18:06:44.128330 - 18:06:46.813906] [ 83.27%] | 1 f4(2
—.6856)

[2021-11-08 18:06:44.328635 - 18:06:46.593395] [ 70.23%] | | f2(2.
-.2648)

[2021-11-08 18:06:44.428813 - 18:06:46.593385] [ 67.12%] | | 1
~f1(2.1646)

[2021-11-08 18:06:44.428851 - 18:06:46.593379] [ 67.12%] | | 1

. f4(2.1645)

[2021-11-08 18:06:44.629144 - 18:06:46.372974] [ 54.07%] | |
~|_ f2(1.7438)

[2021-11-08 18:06:44.729428 - 18:06:46.372967] [ 50.96%] | |
~] 1_ f1(1.6435)

u

(continues on next page)

48 Chapter 3. HiQ Tracing Tutorial




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

| 1
|___

< |

< | | 1

[2021—11—08 18:
[2021-11-08 18:
=]

[2021-11-08 18:

[2021-11-08 18:

[2021-11-08 18:06:44.729487 - 18:06:46.372956]
 f4(1.6435)
[2021-11-08 18:06:44.972807 - 18:06:46.152537]
£2(1.1797)
[2021-11-08 18:06:45.073035 - 18:06:46.152529]
~ f1(1.0795)
[2021-11-08 18:06:45.073101 - 18:06:46.152517]
_ f4(1.0794)
[2021-11-08 18:06:45.273425 - 18:06:45.931942]
| f2(0.6585)
06:45.373683 - 18:06:45.931931]
| 1 f1(0.5582)
06:45.373748 - 18:06:45.931919]
| 1 f4(0.5582)
06:45.574080 - 18:06:45.711033]
~ £2(0.1370)
06:45.674290 - 18:06:45.710935]
| 1 f1(0.0366)
06:45.711257 - 18:06:45.931909]

f£021-11-08 18:
f£021—11—08 18:
f£021-11-08 ISE:
f5$21—11—08 18:
f£021—11—08 18:
f;021-11-08 18:

[2021-11-08 18:

06:

06:

06:

06:

06:

1 3(0.2207)

45.831599 - 18:06:45.931898]

1 £2(0.1003)

45.931852 - 18:06:45.931873]

| | S

45.931988 - 18:06:46.152507]
1 £3(0.2205)

46.052282 - 18:06:46.152497]

1 £2(0.1002)
46.152464 - 18:06:46.152475]
1 f1(0.0000)

06:46.152581 - 18:06:46.372947]
1 3(0.2204)
[2021-11-08 18:06:46.272759 - 18:06:46.372938]
N 1 £2(0.1002)
[2021-11-08 18:06:46.372916 - 18:06:46.372924]
_ £1(0.0000)

[2021-11-08 18:06:46.373011 - 18:06:46.593367]
-1 £3(0.2204)
[2021-11-08 18:06:46.493184 - 18:06:46.593360]
~ 1 f2(0.1002)
[2021-11-08 18:06:46.593342 - 18:06:46.593349]
- 1 f1(0.0000)
[2021-11-08 18:06:46.593431 - 18:06:46.813896]
-.2205)
[2021-11-08 18:06:46.713605 - 18:06:46.813889]
~.£2(0.1003)
[2021-11-08 18:06:46.813858 - 18:06:46.813873]
—. f1(0.0000)
[2021-11-08 18:06:46.813971 - 18:06:47.034441]
[2021-11-08 18:06:46.934184 - 18:06:47.034435]
[2021-11-08 18:06:47.034407 - 18:06:47.034421]

—0000)

[
1(0.0000)

[
[
[

50.

36.

33

33.

20.

17.

17.

S Wo

I u
I u

| u

3(0.2205)

1 f2(0.1003)

1 f1(0.

(continues on next page)

3.9. Multiple Tracing

49




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

] k0: 16363948070358521, [] kl: time

[2021-11-08 18:06:47.387733 - 18:06:47.908781] [100.00%] [] root time(0.5210)
[OH:229us]

[2021-11-08 18:06:47.387733 - 18:06:47.908781] [100.00%] 1 f4(0.5210)

[2021-11-08 18:06:47.588017 - 18:06:47.688221] [ 19.23%] |  f2(0.1002)

[2021-11-08 18:06:47.688196 - 18:06:47.688206] [ 0.00%] | 1 f1(0.0000)

[2021-11-08 18:06:47.688260 - 18:06:47.908773] [ 42.32%] 1 £3(0.2205)

[2021-11-08 18:06:47.808428 - 18:06:47.908765] [ 19.26%] 1 f2(0.1003)
[2021-11-08 18:06:47.908721 - 18:06:47.908746] [ 0.00%] 1 f1(0
—0000)

] k0: 16363948079093882, [] kl: time

[2021-11-08 18:06:48.261303 - 18:06:48.782447] [100.00%] [J root time(0.5211)
[OH:238us]

[2021-11-08 18:06:48.261303 - 18:06:48.782447] [100.00%] 1 f4(0.5211)

[2021-11-08 18:06:48.461619 - 18:06:48.561838] [ 19.23%] |  f2(0.1002)

[2021-11-08 18:06:48.561810 - 18:06:48.561821] [ 0.00%] | 1 f1(0.0000)

[2021-11-08 18:06:48.561881 - 18:06:48.782439] [ 42.32%] 1 £3(0.2206)

[2021-11-08 18:06:48.682091 - 18:06:48.782432] [ 19.25%] -1 f2(0.1003)
[2021-11-08 18:06:48.782395 - 18:06:48.782414] [ 0.00%] 1 f1(0
—0000)

Another way to replace the mock is to use:

driver.get tau id = HiQIdGenerator()

This will allow you to create only one hiq.HiQLatency object but will generate the same result as above.

50 Chapter 3. HiQ Tracing Tutorial



© o N e T A W o =

CHAPTER 4

HIQ ADVANCED TOPICS

The metrics described in the previous chapter are enough for most of the use cases for system metrics. To
gain more insights on business metrics, you need to customize HiQ.

4.1 Customized Tracing

HiqQ is flexible so that you can customize it to trace other non-built-in metrics, such as business metrics. In
order to customize it, you need to create your own class inheriting class higq.HiQSimple and implement
two functions def custom(self) and def custom disable(self).

4.1.1 Log Metrics and Information to stdio

The following is a code example to demo how to log information, including business metrics, into terminal.
The target code is a call chain from main()-> funcl() -> func2(). The arguments for the main
function are two dictionaries: model and data. We know the data input has two keys img path and
size, and we want to log the values corresponding to the keys.

Target Code:

import time

def funcl(model: dict, data: dict) -> int:
time.sleep(l.5)
r2 = func2(model, data)
return r2 * 2

(continues on next page)

51




22

@ ot e W N e

=
o © w =

= e
[

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def func2(model: dict, data: dict) -> int:
time.sleep(2.5)
return len(data["img path"])

def main(model: dict, data: dict) -> int:
r = funcl(model, data)
return r

if name == main

res = main(model={"data": "abc"}, data={"img path":

-1024}%})
print(res)

"/tmp/hiq.jpg", "size":,

Driver Code:

import os

import hiq

from inspect import currentframe as cf
from hiq.constants import *

class MyHiQ(hig.HiQSimple):
def custom(self):
@self.inserter
def my main(data={}, model={}) -> int:
if "img path" in data:

print(f"[Q print log for img path: {data['img path']}")

if "img size" in data:

print(f"[Q print log for img size: {data['img size']}")

return self.o main(data=data, model=model)

self.o main = hiqg.mod("main").main
hig.mod("main").main = my main

def custom disable(self):
hig.mod("main").main = self.o main

def run main():
with hiq.HiQStatusContext():
= MyHiQ()
hig.mod("main") .main(

model={"data": "abc"}, data={"img path": "/tmp/hello.jpg", "img size

"1 1024}
)
if npame == " main_ ":
run_main()
52 Chapter 4. HiQ Advanced Topics




HiQ - A Modern Observability System, Release 1.1.7

In the custom( ) function, we define a new function called my main which has the same signature of
the target code’ s main function, and assign the target code’smaintoself.o main,assign my main
to the target code’ smain.

Inside the my main function, we check if there is img path in the data argument. If there is, we log
it. Finally we call self.o0 main and return the result.

Run the driver code and get the output:

0 python examples/custom/stdio/main driver.py
0 print log for img path: /tmp/hello.jpg
0 print log for img size: 1024

Without touching the target code, we logged one line of message into standard io console. This is useful
for debugging purposes. We can also trace the information in HiQ Tree.

4.1.2 Trace Metrics and Information In HiQ Tree

The target code will be the same as above. The difference here is we extract the information inside
~_my mainand define a function with decorator @self. inserter with extra(extra={}). ex-
tra will contain the information we want to trace. In this case, they are the image path and size.

Driver Code:

import os

import hiq

from inspect import currentframe as cf
from hiq.constants import *

class MyHiQ(hiq.HiQSimple):
def custom(self):
def my main(data={}, model={}, *args, **kwargs) -> int:
img path = data["img path"] if "img path" in data else None
img size = data["img size"] if "img size" in data else None

@self.inserter with extra(extra={"img": img path, "size": img size})
def z(data, model):
return self.o main(data=data, model=model)

return  z(data, model)

self.o main = hiqg.mod("main").main
hig.mod("main").main = my main

def custom disable(self):
hig.mod("main").main = self.o main

def run main():
with hiq.HiQStatusContext():
driver = MyHiQ()

(continues on next page)

4.1. Customized Tracing 53




29
30
31

32
33
34
35
36
37

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

1024},

hig.mod("main") .main(
model={"data": "abc"},

data={"img path": "/tmp/hello.jpg", "from":

)

driver.show()

if name == " main_ ":
run_main()

"driver", "img size":,

Run the driver code and get the output:

0 python examples/custom/higtree/main driver.py

[2021-11-05 05:05:39.910686 - 05:05:43.914784]

~jpg"’,

[2021-11-05 05:05:39.910686 - 05:05:43.914784]

'size': 1024}]

[100.00%] [J root time(4.0041)

[{'img': '/tmp/hello.

[OH:104us]

[100.00%] 1 z(4.0041)

Under the tree’ s root node, we can see the image path information and image size metric.

4.2 Log Monkey King

LMK is a separate high performance logging system of HiQ. Sometimes we don’ t need the structural

54

Chapter 4. HiQ Advanced Topics




HiQ - A Modern Observability System, Release 1.1.7

information of the trace, we just need to log data into a file in the disk. In this case, we can use LMK.

To use LMK, an environment variable LMK must be enabled.

4.2.1 Log Metrics and Information to stdio

Without extra setup, LMK will print out logging information in stdio.

© 0 N e o s W o =

= =
N o= o

[ R = TR 2 S SO JU R R

Target Code

import time

def funcl():
time.sleep(l.5)
func2()

def func2():
time.sleep(2.5)

def main():
funcl()

if npame == " main_ ":
main()

Driver Code:

import os
import hiq

here = os.path.dirname(os.path.realpath( file ))

def run main():
= hiq.HiQLatency(f"{here}/hiq.conf")
hig.mod("main").main()

if npame == " main_ ":
import time

os.environ["LMK"] = "1"
run_main()
time.sleep(2)

At line 15, we set LMK equals to 1, which enables log monkey king. Run the code and we can get:

4.2. Log Monkey King




© o N Gt e W N =

[~ S
w o = O

14

[ N R

HiQ - A Modern Observability System, Release 1.1.7

0 python
2021-11-05

2021-11-05
2021-11-05
2021-11-05
2021-11-05
2021-11-05

examples/lmk/stdio/main driver.py

07:
07:
07:
07:
07:
07:

45;
45
45
45:
45;
45;

42.
42.
43.
46.
46.
46.

019567 -
020127 -
521903 -
024517 -
024616 -
024635 -

[time]
[time]
[time]
[time]
[time]
[time]

[0
[0
[0
(0
(0
[0

2418220]
2418220]
2418220]
2418220]
2418220]
2418220]

I o e

[main]
[funcl]
[func2]
[func2]
[funcl]
[main]

The default log format is:

time stamp - [metric name]

[process id] monkey [function name] [extra information]

means function call is started, and & means function call is completed.

4.2.2 Log Metrics and Information to file

We can easily log the metrics and information into a file with LMK. LMK supports Python’ s built-in

logging module and third party logging module like Loguru.

4.2.2.1 Python built-in Logging module

Target Code:

import time

def funcl():
time.sleep(1l.5)
func2()

def func2():
time.sleep(2.5)

def main():
funcl()

if name == " main ":

main()

Driver Code:

import logging

import os
import hiq

(continues on next page)
56 Chapter 4. HiQ Advanced Topics




© o N o

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

here = os.path.dirname(os.path.realpath( file ))

LOG_FORMAT = "%(levelname)s %(asctime)s - %(message)s"

logging.basicConfig(
filename="/tmp/lmk.log", filemode="w", format=LOG FORMAT, level=logging.INFO

)
logger = logging.getlLogger()

def run main():
= hiq.HiQLatency(f"{here}/hiq.conf", lmk logger=logger)
hiqg.mod("main") .main()

if npame == " main_ ":
import time

os.environ["LMK"] = "1"
run _main()
time.sleep(2)

¢ Explanation
Line 9-15: set up logging format, log file path and name
Line 19: pass Logger as lmk logger when constructing HiQLatency Object
Run the driver code, then you can see the log has been written into file /tmp/lmk. log:

0 python examples/lmk/logging/main driver.py

0 cat /tmp/lmk.log

INFO 2021-11-05 17:03:57,581 - 2021-11-05 17:03:57.580419
—[main]

INFO 2021-11-05 17:03:57,581 - 2021-11-05 17:03:57.581022 - [time] [[J 3568910]
< [funcl]

INFO 2021-11-05 17:03:59,083 - 2021-11-05 17:03:59.082735 - [time] [[J 3568910]
—[func2]

INFO 2021-11-05 17:04:01,585 - 2021-11-05 17:04:01.585346 - [time] [[J 3568910]
—[func2]

INFO 2021-11-05 17:04:01,585 - 2021-11-05 17:04:01.585472 - [time] [[0 3568910]
< [funcl]

INFO 2021-11-05 17:04:01,585 - 2021-11-05 17:04:01.585492 - [time] [[J 3568910]
—[main]

[time] [0 3568910]

C C C C C

O O 0O O >0 &

C

4.2. Log Monkey King 57




HiQ - A Modern Observability System, Release 1.1.7

4.2.2.2 Third-party Logging Library Support

LMK supports third-party logging libraries which conforms to the standard logging protocol. One exam-
pleis Loguru. loguru is an easy-to-use, asynchronous, thread-safe, multiprocess-safe logging library.
You can install it by running:

pip install loguru

The target code is the same as above. This is the driver Code

import os

import hiq
from loguru import logger

here = os.path.dirname(os.path.realpath( file ))

def run main():
= hiqg.HiQLatency(
f"{here}/hiq.conf", lmk logger=logger, lmk path="/tmp/lmk guru.log"
)

hig.mod("main") .main()

if npame == " main_ ":
import time
os.environ["LMK"] = "1"

run_main()
time.sleep(2)

Run the driver code, you can see the information is printed in the terminal:

@ python examples/lmk/loguru/main_driver.py
| INFO | - 169 - 2021-11-85 17:45:54.346130 - [time] [ID3659097] @ [main]

INFO - - 2021-11-85 17:45:54,346699 — [time] [IB3659097] &[funcl]

INFO - 2021-11-85 17:45:55.848450 — [time] [iB3659097] @[ funcz]

INFO
INFO

- 2021-11-85 17:45:58.351163 — [time] [IB3659897] #[funcl]
— 2021-11-85 17:45:58.351182 - [time] [ID3659097] #[main]

| |

| | g

| INFO I ] 169 - 2021-11-85 17:45:58.351059 - [time] [ID3659097] #[func2]
| | g

| |

The same information is also stored in the log file:

0 cat /tmp/lmk guru.log

2021-11-05 17:45:54.346 | INFO | hig.monkeyking:consumer:69 - 2021-11-05,
—17:45:54.346130 - [time] [[] 3659097] [J [main]
2021-11-05 17:45:54.347 | INFO | hig.monkeyking:consumer:69 - 2021-11-05,
—17:45:54.346699 - [time] [[] 3659097] [J [funcl]
2021-11-05 17:45:55.848 | INFO | hig.monkeyking:consumer:69 - 2021-11-05,
—17:45:55.848450 - [time] [[ 3659097] O [func2]
2021-11-05 17:45:58.351 | INFO | hig.monkeyking:consumer:69 - 2021-11-05,
—17:45:58.351059 - [time] [[] 3659097] [J [func2]
2021-11-05 17:45:58.351 | INFO | hig.monkeyking:consumer:69 - 2021-11-05,

—17:45:58.351163 - [time] [[] 3659097] [J [funcl]

(continues on next page)

58 Chapter 4. HiQ Advanced Topics




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

2021-11-05 17:45:58.351 | INFO | hig.monkeyking:consumer:69 - 2021-11-05,
—~17:45:58.351182 - [time] [0 3659097] O [main]

4.3 Lumber)ack

Different from LMK, which writes log entry for each span, LumberJack is to handle an entire HiQ tree.
For simplicity, we call it Jack. Jack is very useful in use cases where the overhead for processing metrics is
so big that you cannot process each entry one by one. Kafaka is one Exmaple. Due to message encoding,
network latency and response validation, a call to a Kafaka producer’ s send message can easily take
more than 1 second. Jack is a good way to handle Kafka message. We can send metrics tree to Kafka and
process it later with an analytics server. This will be described in details in section Integration with OCI
Streaming.

Jack also writes a 500MB-rotated log in ~/ .hiq/log jack. log unless you set environmental variable
NO JACK LOG.

$ tail -n3 ~/.hiq/log jack.log
time,v2,0,{"None":1637008247.9725869,1637008251.9771237,{" main":1637008247.
—9725869,1637008251.9771237,{" funcl":1637008247.972686,1637008251.9771047,{"
—func2":1637008249.4744177,1637008251.977021,}}}}
time,v2,0,{"None":1637008251.9785185,1637008255.9829764,{" main":1637008251.
-9785185,1637008255.9829764, {" funcl":1637008251.978641,1637008255.982966,{"
—func2":1637008253.480345,1637008255.9829247,}}}}

time,v2,0, {"None":1637008255.983492,1637008259.9854834,{" main":1637008255.
—983492,1637008259.9854834, {" funcl":1637008255.9836354,1637008259.9854727,{"
—func2":1637008257.485351,1637008259.9854305,}}}}

4.3. Lumberjack 59



7_integration.html#oci-streaming
7_integration.html#oci-streaming

HiQ - A Modern Observability System, Release 1.1.7

4.4 Async and Multiprocessing in Python

e TODO

60 Chapter 4. HiQ Advanced Topics



CHAPTER 5

HIQ UI

HiQ provide an integrated UT if you use popular Python web framework like FastAPI, Flask etc.

Take FastAPI as an example, where can find it at here.
webapp . py is the original web server code to serve an AlexNet onnx model with FastAPI.

To trace the latency, we can run python webapp driver.py:

> python webapp driver.py

INFO: Started server process [16618]

INFO: Waiting for application startup.

INFO: Application startup complete.

INFO: Uvicorn running on http://0.0.0.0:8080 (Press CTRL+C to quit)

Open the link http://localhost:8080/hiqg in your browser, and you will see something like this

page:
& > C {t @ localhost:8080/hig < & Mm@ s N0
HiQ @D
HiQ: i Enabled, CPU Type: ([ISHREXSORIRICEIESSISEISSENSNOENS  CFL Load: 2 23, Process Memory: 2 66GB, Cument System Memory Usape: (@IBISEE) | Generated ab 2023.01.08 09:11-20PST
Latency

Req ID Latency

A 10{1300cd45740552 Sa03Tda T dif 1 of 4.141674995422363 2023-01-09 08:11:17.823558 2023-01-08 05:11:21 965634

Click the APT link under HIQ, and you can see the swagger UT for the web server. You can try out the

/predict endpoint to send some requests.

61



https://github.com/oracle-samples/hiq/tree/main/hiq/examples/fastapi

HiQ - A Modern Observability System, Release 1.1.7

In the response header part, you can see something like:

access-control-expose-headers: X-Request-ID
content-length: 23

content-type: application/json

date: Mon,06 Feb 2023 19:55:44 GMT

server: uvicorn

x-latency: 0.15682927519083023

x-request-id: fe0a322299874deeb811b0cdb9ac55a5

By default, HiQ will generate a unique X - request - id for each request. It will put the endpoint latency
in x-latency field.

Then you can go back to the HiQ page(http://localhost:8080/hiq), and click the req ID in the
Latency table. You would see something like:

@y (D lecalhost B0BSAtenCy 1001 300 A4S TA0T RIS £0 ¥ T da TN 18 < & =W om oApow0

Latency Report @™

Request |D: 10f130dcd4974059a25e03TdaTdff1cB

This gives you the text graph of the HiQ tree.

5.1 Disable HiQ

In case you want to disable HiQ, just send a GET request to http://localhost:8080/hiq disable,
or just access the URL in the browser.

62 Chapter 5. HiQ Ul




HiQ - A Modern Observability System, Release 1.1.7

5.2 Enable HiQ

To aenale HiQ, you just need to send a GET request to http://localhost:8080/hiq _enable, or
just access the URL in the browser.

5.2. Enable HiQ 63



HiQ - A Modern Observability System, Release 1.1.7

64

Chapter 5. HiQ Ul



CHAPTER 6

HIQ DISTRIBUTED TRACING

Distributed tracing is the capability for a tracing solution to track and observe service requests as they flow
through distributed systems by collecting data as the requests go from one service to another. The trace
data helps you understand the flow of requests through your microservices environment and pinpoint
where failures or performance issues are occurring in the system—and why.

6.1 OpenTelemetry

Telemetry

65



HiQ - A Modern Observability System, Release 1.1.7

OpenTelemetry is a set of APIs, SDKs, tooling and integrations that are designed for the creation and
management of telemetry data such as traces, metrics, and logs. It is vendor neutral, so it doesn’ t specify
implementation details like Jaeger or Zipkin. OpenTelemetry provides default implementations for all
the tracing backends and vendors, while allowing users to choose a different implementation for vendor
specific features.

Telemetry
Backend

App

Extensibility

HiQ supports OpenTelemetry out of the box by context manager HiQOpenTelemetryContext.

To get OpenTelemetry and the code examples in this chapter working, install both the opentelemetry API
and SDK:

pip install opentelemetry-api
pip install opentelemetry-sdk

The API package provides the interfaces required by the application owner, as well as some helper logic
to load implementations. The SDK provides an implementation of those interfaces. The implementation
is designed to be generic and extensible enough that in many situations, the SDK is sufficient. You won’
t use them directly but it is needed by HiQ.

6.2 Jaeger

S/
<« » — —
-

Jaeger, inspired by Dapper and OpenZipkin, is a distributed tracing platform created by Uber Technolo-
gies and donated to Cloud Native Computing Foundation. It can be used for monitoring microservices-
based distributed systems:

66 Chapter 6. HiQ Distributed Tracing




L T = S O R R

—= = e
o o= o

HiQ - A Modern Observability System, Release 1.1.7

Distributed context propagation

Distributed transaction monitoring

Root cause analysis
Service dependency analysis

Performance / latency optimization

https://www.jaegertracing.io/

HiQ supports Jaeger out of the box too.

6.2.1

Set Up

The following is an example which assume you have jaeger server/agent running locally. If you don’ t
have, you can run the command to start a docker instance for jaeger server:

docker run --rm --name hiq jaeger \
COLLECTOR ZIPKIN HOST PORT=:9411 \

-e
-p
-p
-p
-p
-p
-p
-p
P
ja

5775:5775/udp \
6831:6831/udp \
6832:6832/udp \
5778:5778 \
16686:16686 \
14268:14268 \
14250:14250 \
0411:9411 \
egertracing/all-in-one

The target code is the same as before:

impo

def

def

rt time

funcl():
time.sleep(l.5)
print("funcl")
func2()

func2():
time.sleep(2.5)
print("func2")

def main():
funcl()

if name == " main_ ":
main()

Jeager supports two protocols: thrift and protobuf.

6.2. Jaeger

67




© o N ot ke W N =

I
w o = O

14

[ N R

HiQ - A Modern Observability System, Release 1.1.7

6.2.2 Thrift + HiQ

Below is the driver code for thrift. You can see the only change is line 4 and 10. You only need to add a
context manager hiq.distributed.HiQOpenTelemetryContext to get the jaeger tracing working

import os

import hiq
from hiq.distributed import HiQOpenTelemetryContext, OtmExporterType

here = os.path.dirname(os.path.realpath( file ))

def run main():
with HiQOpenTelemetryContext(exporter type=0tmExporterType.JAEGER THRIFT):
driver = hig.HiQLatency(f"{here}/hig.conf")
hig.mod("main") .main()
driver.show()

if npame == " main_ ":
run _main()

Run the driver code and check Jaeger Ul at http://localhost:16686, you can see the traces have
been recorded:

JAEGER Ul Search Compare System Architecture

¢ w hig-service: __main % Trace Timeline v

ace Start November 6 2021, 01:57:01 Durationds Services1 Depth3 Total Spans3

Service & Operation v ¥» s 1s 2s 38 4s

+ | hig-service _ main

| hig-service _tunct
| hig-service _r

6.2.3 Protobuf + HiQ

Protobuf works the same way. You just need to replace OtmExporterType.JAEGER THRIFT with
OtmExporterType.JAEGER PROTOBUF. This exporter always sends traces to the configured agent us-
ing Protobuf via gRPC.

def run main():
with HiQOpenTelemetryContext(exporter type=0tmExporterType.JAEGER PROTOBUF):
driver = hiq.HiQLatency(f"{here}/hiq.conf")
hig.mod("main") .main()
driver.show()

Run the driver code, and refresh Jaeger UL. We can see a new trace appears in Jaeger UT:

68 Chapter 6. HiQ Distributed Tracing




HiQ - A Modern Observability System, Release 1.1.7

JAEGER UI Search Compare System Architecture _ About Jaeger ~

Search JSON File s
3
Service
hig_service
g
Operation 11:31:40 am 11:40:00 am 11:48:20 am 11:56:40 am
all
2 Traces Sort: Most Recent Deep Dependency Graph
Tags
Compare traces by selecting result items
Lookback
Last Hour hiq_service: __main ad4age ds
3 Span: hig_service (3) od 5
Max Duration Min Duration == e 2 il ] !
2 fow 5@
hiq_service: __main sce20bc 4s
Limit Results
3 Spans hiq_service (3) Today 11:26:37 am
20
34 minutes ago
Click the new trace and we can see:
JAEGER Ul Search Compare System Architecture _ About Jaeger
< w hig_service: __main #®  Trace Timeline v
November 6 2021, 11:59:43 4s 1 3 3
s
Service & Operation v > ¥ » Ops 1s 2s 3s 4s

v hiq_service _ mair
~  hiq_service _funct

hiq_service _ funcz

6.3 ZipKin

HiQ allows exporting of OpenTelemetry traces to Zipkin. This sends traces to the configured Zipkin col-
lector endpoint using;:

¢ JSON over HTTP with support of multiple versions (v1, v2)
e HTTP with support of v2 protobuf

6.3. ZipKin 69



HiQ - A Modern Observability System, Release 1.1.7

6.3.1 Set Up

The quickest way to start a Zipkin server is to fetch the latest released server as a self-contained executable
jar. Note that the Zipkin server requires minimum JRE 8. For example:

$ curl -sSL https://zipkin.io/quickstart.sh | bash -s
$ java -jar zipkin.jar

If everything is fine, you should see a Zipkin logo like:

M java -jar zipkin.jar

oo
o000
000000
00000000
0000000000

© o N e T A W N =

000000000000

0000000

000000

000000
000000 0
ooo000 oo
0000000 0000
000000 00000
000000 000000
00000000 oo
0000000000000 00
000000000000
00000000

: version 2.23.4 ::

0000000

0000000

0000000
o 000000
oo ooo000
0000 0000000
00000 0000000
000000 0000000
oo 00000000
00 0000000000000
000000000000
00000000

commit 3827477 ::

2021-11-06 2@:31:13. INFO [/] ——— [oss-http-*:9411] . : Serving HTTP at /0:0:0:0:0:0:
0:0%0:9411 - http://127.0.0.1:9411/

Note: You can use the Jaeger server (port 9411) we launched too. But according to my test, it only works
for JSON + HTTP mode, not Protobuf mode. However, the official Zipkin server works for both modes.
Get the latest version at: https://github.com/openzipkin/zipkin.

The target code is the same as before.

6.3.2 JSON + HTTP + HiQ

import os

import hiq
from hiq.distributed import HiQOpenTelemetryContext, OtmExporterType

here = os.path.dirname(os.path.realpath( file ))

def run main():
(continues on next page)

70 Chapter 6. HiQ Distributed Tracing


https://github.com/openzipkin/zipkin

10
11
12
13
14
15
16
17

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

with HiQOpenTelemetryContext(exporter type=0tmExporterType.ZIPKIN JSON):
driver = hiqg.HiQLatency(f"{here}/hiq.conf")
hig.mod("main") .main()
driver.show()

if name ==
run_main()

__main_

Run the driver code and check the Zipkin web UT.

@ localhost:9417/zipkin/?lookback Ts=1636231321601&0imit=10 ) me g [}
Zipkin Q, Find a trace W ¥ ENGLISH v x Search by trace ID
2 RuN QuERY Qv
1 Result EXPAND ALL | COLLAPSE ALL Servica filters ¥
Root Start Time Spans - Duration
v hig_service: main 10 minutes ago (11/06 13:31:47:504) 3 4.004s SHOW

Click the SHOW button and we can see:

@ localhost:9411/zipkin/traces/fd3b011e206c482218aa01e5113d315a * ™ @A }'. e

Zipkin Q Fir =" Deper F ENGLISH x Search by trace ID

HIQ_SERVICE: __main

Duration: 4.004s Services: 1 Depth: 3 Total Spans: 3 Trace ID: 1d3b011e206c482218aa01e5113d315a & DOWNLOAD JSON
Alw »
HIQ_SERVICE
|oms |1.335s |2.669s 4.004s | main
H HIQ_SERVICE ~ __main [4.004s]
Span ID:b5bSca2baalifada Parent ID:None
M HIQ_SERVICE __func1 [4.004s]

Annotations

2 25025
|

SHOW ALL ANNOTATIONS
Tags

otm_hig

hig_service

python

telemetry.sdk.name
opentelemetry

The default endpoint is http://localhost:9411/api/v2/spans. If there is a different endpoint
XXX, you should add endpoint="'xxx" as one of HiQOpenTelemetryContext’ sarguments in the
constructor.

6.3. ZipKin 71




© ® N Wt R W N =

T e T e T
B I N -

HiQ - A Modern Observability System, Release 1.1.7

6.3.3 Protobuf + HiQ

import os

import hiq
from hiq.distributed import HiQOpenTelemetryContext, OtmExporterType

here = os.path.dirname(os.path.realpath( file ))

def run_main():
with HiQOpenTelemetryContext(exporter type=0tmExporterType.ZIPKIN PROTOBUF):
driver = hiq.HiQLatency(f"{here}/hiq.conf")
hig.mod("main") .main()
driver.show()

if name == " main
run_main()

Run the driver code and check the Zipkin web UL We can see a new trace has been recorded.

@ localhost:9411/zipkin/?lookback=15m&endTs=1636232607848&limit=10 + M Ba ;". Q
Zipkin Q Find a trace 35 [0 Fp ENGLISH w X Search by trace ID
¢ ’
2 Results EXPANDALL = COLLAPSE ALL Service filters -
Root Start Time Spans - Duration
A~ hig_service:  mair 3 minutes ago (11/06 14:01:13:691) 3 4.005s SHOW

Trace ID: f7bfcd5d1c78e7ebbf556d927¢961ad0

~ hiq_service: main a few seconds ago (11/06 14:03:18:503) 3 4.005s SHOW

Trace ID: 5110b3169d101b84b3403972c6e45903

hig_service (3)

6.4 Ray

o Installation

pip install ray

72 Chapter 6. HiQ Distributed Tracing




HiQ - A Modern Observability System, Release 1.1.7

6.5 Dask

¢ Installation

pip install dask

6.5. Dask 73




HiQ - A Modern Observability System, Release 1.1.7

74 Chapter 6. HiQ Distributed Tracing



CHAPTER 7

HIQ VENDOR INTEGRATION

7.1 OCI APM

OCT Application Performance Monitoring (APM) is a service that provides deep visibility into the perfor-
mance of applications and enables DevOps professionals to diagnose issues quickly in order to deliver a
consistent level of service.

HiQ supports OCI APM out of the box.
7.1.1 Get APM Endpoint and Environments Setup
To use Oracle APM, we need to have the APM server’ s endpoint. To get the endpoint, you should copy

your own APM BASE URL and APM PUB KEY from OCI web console and set them as environment vari-
ables.

75


https://www.oracle.com/manageability/application-performance-monitoring/

HiQ - A Modern Observability System, Release 1.1.7

= Cloud Ap > earch for resources, services, and doc US West (Phoenix) v [>-) /%
ORACLE Cloud Search f dd US West (Pt s

APM ~ APM Domains » Domain Details

gamma g

Add Tags Move APM Domain

APM Domain Information Tags
' ' APM_BASE_URL .

Created: Mon, Aug 30, 2021 15:54:56 UTC Compartment: ocas-vision-mie

Description: Data Upload Endpoint: https://aaaac... Show Copy

OCID: ...dk34tTiagifda Show Copy

ACTIVE

Hesources

Data Keys

Work Requests Generate Data Key

Apdex Thrasholds Name 4 | Type Value

auto_generated_private_datakey Private Show Copy

APM_PUB_KEY

auto_generated_public_datakey Public Show Copy

Page 1 of1 (1-2of 2 items)

APM BASE URL is the Data Upload Endpoint in APM Domains page; APM PUB KEY is the public
key named auto generated public datakey in the same page. You can just click the word show
to copy them.

Warning: The values below are fake and for demo purposes only. You should replace
them with your own APM_BASE URL and APM_PUB KEY.

Then you can set them in the terminal like:

export APM BASE URL="https://aaaacb64xyvkaiaaaxxxxxxxxxx.apm-agt.us-phoenix-1.oci.
—oraclecloud.com"
export APM PUB KEY="JL6DVW2YBYYPA6G53UG3ZNAJSHSBSHSN"

Tip:  “The public key and public channel supposed to be used by something like a browser
in which any end user may see the key. For server side instrumentation you should use the
private data key. Changing this will make no difference in any way. The idea is that you may
want/need to change the public key more often.”

76 Chapter 7. HiQ Vendor Integration




e R = T 2 S SO JU R R

== =
RN

HiQ - A Modern Observability System, Release 1.1.7

—Avi Huber

You can also set it in your python code programmatically with 0s.environ like what we have done in
previous chapter.

There are two ways to use OCI APM in HiQ. The legacy way is to use HLQOciApmContext which uses
py_zipkin under the hood. The modern way is to use HiQOpenTelemetryContext, which uses the
new OpenTelemetry api.

7.1.2 HiQOciApmContext

The first way to send data to OCT APM is to use HLQOciApmContext. Touse HiQOciApmContext, you
need to install py zipkin:

pip install py zipkin

7.1.2.1 A Quick Start Demo

With the two environment variables set, we can write the following code:

import os
import time

from hiq.vendor_oci_apm import HiQOciApmContext

def fun():
with HiQOciApmContext (
service name="hiq test apm",
span_name="fun test",

time.sleep(5)
print("hello")

if name ==" main_ ":
os.environ["TRACE TYPE"] = "oci-apm"
fun()

Run this code you can see the result in APM trace explorer.

7.1. OCI APM 77




)

w N e ot e w

HiQ - A Modern Observability System, Release 1.1.7

= ORACLE Cloud

Applica

APM v~ | Trace Explorer

Trace Explorer

Traces  Trace Services  Services  Operations  App Servers  WebApps  Sessions  Users  SQLs

show (traces) TraceStatus as Status,
TraceFirstSpanStartTime as "Start Time",
ServiceName as Service,

Fields < | Traces

Q Search

| Numeric

Service: Operation Status StartTime ~ | Duration
v String
hiq_test_apm: fun_test 21:56:29.920 ...

® Complete 5.01s

Traces Spans

AggregateCount
AjaxCalls
AjaxDownloadTime
AjaxErrors

AlavFiretRytaTima

7.1.2.2 Monolithic Application Performance Monitoring

Just like before, we have the same target code

Search for resources, services, and documentation US West (Phoenix) v

Compartment APM Domain
ocas-vision-mle & gamma
awisiondev (reof)/ocas-vision-mie
HTTPLinks  Traces*  Spans*
R Last 60 Minutes -
un Today 21:00 - 22:00 UTC-07:00 ¥
vy @
Showing 1 & £
Spans Span Errors
I 0

import time

def funcl():
time.sleep(1.5)
print("funcl")
func2()

def func2():
time.sleep(2.5)

print("func2")

def main():
funcl()

if name ==
main()

" main_

This is the driver code:

import hiq
import os

from hiq.vendor_oci_apm import HiQOciApmContext

here =

os.path.dirname(os.path.realpath( file ))

(continues on next page)

78

Chapter 7. HiQ Vendor Integration




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def run main():
with HiQOciApmContext (
service name="hiq doc",
span name="main driver",

)
= hiq.HiQLatency(f"{here}/hiqg.conf")
hig.mod("main").main()
if name == " main ":

os.environ["fﬁACE_TYPE"] = "oci-apm"

run_main()

To view the performance in Oracle APM with HiQ, you just need to:

e Set environment variable TRACE TYPE equal to oci-apm (Line 18)
e Create a HLQOciApmContext object using with clause and put everything under its scope (Line

10-12)

Run this code and check APM trace explorer in the web console.

ORACLE Cloud

Applications

Search for resources, services, and documentation

US West (Phoenix) v/

APM | Trace Explorer

Trace Explorer

Traces Trace Services Services Operations App Servers ‘Web Apps Sessions
show (traces) TraceStatus as Status,
TraceFirstSpanStartTime as "Start Time,
ServiceName as Service.
Fields < Traces
Q Search
‘Service: Operation Status
' Numeric ' String
hiq_doc: main_driver @® Complete
Traces Spans
hiq_test_apm: fun_test @® Complete
AggregateGount

AjaxCalls

We got a 4-span trace! Click hiq doc:

Compartment APM Domain
ocas-vision-mle < gamma
Users SQLs HTTP Links Traces * Spans *
Ri Last 8 Hours
an Today 14:53 - 22:53 UTC-07:00
2
Showing 2 B =B

Start Time il Duration Spans Span Errors
182030871 UTCOT... 4015 —— 4 0 O
19:19:35.540 UTC-07... 55 | ] 1 0

main driver and we cansee Trace Details page:

7.1. OCI APM

79




© o N o e W N e

LT T S G S
B = S © 0 9 o o e W o o= O

HiQ - A Modern Observability System, Release 1.1.7

= ORACLECloud  Aspicatons > Search for resources, services, and documentation US West (Phoenix) v IASNONN:=: I ¢

APM ~  Trace Explorer » Trace Details

4 hig_doc: main_driver

Status: @ Complete Services: 1 Span Depth: 4
Span Errors: 0 Total Spans: 4 Trace ID: 499707508a610960
Abridged: No

4 Topology

+ Show Unknown Client(s)
Arrow Width - @
Avg Span Duration >

Services in Diagram

M nig_doc
—_— ) —> 00—

4 Spans
Spans 0 1s 2s 3s 4s
4 hig_doc: main_driver 4.01s
4 hig_doc: __main 4s
4 hiq_doc: _funct 4s
hiq_doc: _func2 I 0 S

7.1.2.3 HiQ with Flask and OCI APM

HiQ can integrate with Flask and OCI APM by class FlaskWithOciApm in a non-intrusive way. This
can be used in distributed tracing.

import os
import time

from flask import Flask
from flask_request_id header.middleware import RequestID
from hiq.server_flask with_oci_apm import FlaskWithOciApm

def create app():
app = Flask( name )
app.config["REQUEST ID UNIQUE VALUE PREFIX"] = "hig-"
RequestID(app)
return app

app = create app()

amp = FlaskWithOciApm()
amp.init app(app)

@app.route("/", methods=["GET"])

(continues on next page)

80 Chapter 7. HiQ Vendor Integration




23
24
25
26
27
28
29
30
31
32
33
34

36
37
38

—

oW

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def index():
time.sleep(2)
return "OK"

@app.route("/predict", methods=["GET"])
def predict():

time.sleep(1)
return "OK"
if name == " main ":

host = "0.0.0.0"

port = int(os.getenv("PORT", "8080"))
debug = False

app.run(host=host, port=port, debug=debug)

All the endpoints requests information will be recorded and available for analysis in APM.

= ORACLE Cloud  Applications > Search for resources, services, and documentation US West (Phoenix) v ASNON:E N ¢

APM v | Trace Explorer

Trace Explorer Compartment APM Domain

ocas-vision-mie < gamma

Traces  Trace Services  Services  Operations  App Servers  Web Apps  Sessions  Users  SQLs  HTTPLinks  Traces®  Spans*

show (traces) TraceStatus as Status, Run Last 60 Minutes
TraceFirstSpanStartTime as 'Start Time", Today 21:33 - 22:33 UTC-07:00

v @
ServiceName as Service, P &

Fields < | Traces snowmgs ® -8
Q Search x

Service: Operation Status Start Time ¥ Duration Spans Span Errors
/| Numeric v/ String
example_flask_apm: None.GET @® Complete 22:31:57.866 UTC-0... <Ilms 1 _ 0
Traces Spans

example_flask_apm: index. GET @ Complete 22:31:55.284 UTC-0...  2s
AggregateCount

—
AjaxCalls hiq_test_apm: fun_test ® Complete 21:56:29.920 UTC-0... 5.01s ] 1 0
AjaxDownloadTime
AjaxErrors
AjaxFirstByteTime
AjaxInitTime
AjaxResponseTime
ApdexLevel
ApdexScore

7.1.3 HiQOpenTelemetryContext

The second way to send data to OCI APM is to use HLQOpenTelemetryContext, which leverage Open-
Telemetry api under the hood.

For the same target code, the driver code is like:

import hiq
import os

from hiq.distributed import HiQOpenTelemetryContext, OtmExporterType

here = os.path.dirname(os.path.realpath( file ))

(continues on next page)

7.1. OCI APM 81




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def run main():

with HiQOpenTelemetryContext(exporter type=0tmExporterType.ZIPKIN JSON):

= hiq.HiQLatency(f"{here}/hiq.conf")

hig.mod("main") .main()

if name == " main_ ":
run_main()

Note: OCI APM doesn’ t support Protobuf metrics data for now. Only Json format data via
HTTP is supported. So OtmExporterType.ZIPKIN JSON is required in line 10 above.

Run the driver code and go to the OCT APM web console, we can see:

ORACLE Cloud

Applications > Search for resources, services, and decumentation

US West (Phoenix) v

APM v | Trace Explorer

Trace Explorer

Traces  Trace Services  Services  Operations  App Servers ~ WebApps  Sessions  Users  SQLs  HTTP Links

show (traces) TraceStatus as Status,
TraceFirstSpanStartTime as "Start Time®,
ServiceName as Service,

Fields < | Traces

Q Search
Service: Operation Status Start Time ~ | Duration
+ Numeric « String

hiq_service: __main ® Complete 14:22:35.142 UTC-07...  4.01s

Traces Spans

AggregateCount
AjaxCalls
AjaxDownloadTime
AjaxErors
AjaxFirstByteTime
AjaxinitTime

Click hiq_service:

~_main, we can see the trace details:

Annauncements

Compartment APM Domain

ocas-vision-mie S| | gamma @
aivisiondev (root)/ocas-vision-mie

Spans *
R Last 60 Minutes
an Today 13:24 - 1424 UTC-07:00
PAANO)
Showing 1 = &
Spans Span Errors
I 3 I 0

82

Chapter 7. HiQ Vendor Integration




© o N e T s W N =

= e =
o= o

HiQ - A Modern Observability System, Release 1.1.7

= ORACLE Cloud Applications Search for resources, services, and documentation

APM v | Trace Explorer » Trace Details

4 hig_service: __main

Status: @ Complete Services: 1 Span Depth: 3
Span Errors: 0 Total Spans: 3 Trace ID: 10e0121b218dc651009209e633149607
Abridged: No

4 Topology

+| Show Unknown Client(s) @

Arow Width -
Avg Span Duration <
Services in Diagram

M hiq_service

4 Spans

Spans 0 is 25 3s

4 hig_service: __main

4 hiq_service: __funcl

hiq_service: _func2

7.1.4 Reference

¢ OCT Application Performance Monitoring

7.2 OCI Functions

First you need to add hiqin the requirements. txt

4s

4.01s

4.01s

fdk>=0.1.39
hig

We can easily send metrics data to APM inside an OCI function like below:

import io
import json
import logging
import os

import hiq
from hiq.distributed import HiQOpenTelemetryContext, OtmExporterType
from fdk import response

here = os.path.dirname(os.path.realpath( file ))

def run main():

with HiQOpenTelemetryContext(exporter type=0tmExporterType.ZIPKIN JSON):

= hiq.HiQLatency(f"{here}/hiq.conf")
hig.mod("main") .main()

(continues on next page)

7.2. OCI Functions

83



https://docs.oracle.com/en-us/iaas/application-performance-monitoring/index.html

18
19
20
21
22
23
24

26
27
28
29
30

32
33

A o e

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def handler(ctx, data: io.BytesIO = None):

name = "World"

try:
run_main()
body = json.loads(data.getvalue())
name = body.get("name")

except (Exception, ValueError) as ex:
logging.getlLogger().info("error parsing json payload: " + str(ex))

logging.getlLogger().info("Inside Python Hello World function")
return response.Response(
ctx,
response data=json.dumps({"message": "Hello {0}".format(name)}),
headers={"Content-Type": "application/json"},
)

OCI Function is normally memory constrained. So you can use HiQMemory to replace HiQLatency
above to get the memory consumption details.

7.3 OCI Telemetry(T2)

The Oracle Telemetry (T2) system provides REST APIs to help with gathering metrics, creating alarms,
and sending notifications to monitor services built on the OCI platform. HiQ integrates with T2 seamlessly.

7.4 OCI Streaming

The OCI(Oracle Cloud Infrastructure) Streaming service provides a fully managed, scalable, and durable
solution for ingesting and consuming high-volume data streams in real-time. Streaming is compatible
with most Kafka APIs, allowing you to use applications written for Kafka to send messages to and re-
ceive messages from the Streaming service without having to rewrite your code. HiQ integrates with OCI
streaming seamlessly.

To use OCI streaming you need to install oci python package first:

pip install oci

Then set up OCI streaming service and create a stream called hiq for instance. Please refer to OCI Stream-
ing Document for how to set them up.

The target code is the same as before, and the following is the sample driver code:

import os
import hiq
from hiq.hiq_utils import HiQIdGenerator

here = os.path.dirname(os.path.realpath( file ))

(continues on next page)

84 Chapter 7. HiQ Vendor Integration



https://docs.oracle.com/en-us/iaas/Content/Streaming/home.htm
https://docs.oracle.com/en-us/iaas/Content/Streaming/Tasks/managingstreams.htm
https://docs.oracle.com/en-us/iaas/Content/Streaming/Tasks/managingstreams.htm

© o N o

HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def run main():
with hiqg.HiQStatusContext():
driver = hiqg.HiQLatency(f"{here}/hiq.conf", max hiq size=0)
for in range(4):
driver.get tau id = HiQIdGenerator()
hig.mod("main").main()
driver.show()

if name == " main ":
import time

os.environ["JACK"] = "1"
os.environ["HIQ OCI STREAMING"] = "1"
os.environ[
"OCI STM END"
] = "https://cell-1.streaming.us-phoenix-1.oci.oraclecloud.com"
os.environ]|
"OCI_STM OCID"
] = "ocidl.stream.ocl.phx.
—amaaaaaa’4akfsaawjmfsaeepurksnsd4oplsi5tobleyhfuxfqz24vc42k7q"

run_main()
time.sleep(2)

Due to the high latency of Kafka message sending, we process the metrics in the unit of HiQ tree
in another process Jack. What you need to do is to set the environment variables JACK and
HIQ OCI STREAMING to 1 like line 20 and 21, and also the streaming endpoint(OCI STM END) and
streaming OCID(OCI_STM OCID) with the information from your OCI web console.

Run the driver code and then go to OCI web console, you can see the HiQ trees have been recorded.

7.4. OCI Streaming 85




HiQ - A Modern Observability System, Release 1.1.7

streaming US Waest (Phoenix) » _i;; ':'Z) @ o

Home = Streaming » Stream Details
hig

Produce Test Message Move Resource | | Add Tags

Stream Information Tags

Stream Information Settings

Stream Name: hiq Number of partitions: 1
ACTIVE OCID: ...cuan-Show  Copy Retention: 168 hours

Compartment: avilio-: . el o Tl T Read Throughput: 2 MB/s

Messages |E it i s Write Throughput: 1 MB/s

Endpoint: fom =it Y

Stream Pool: DefaultPool Move

Rescurces Recent Messages
Click Load Messages to consume 50 messages published in last minute
Recent Messages
Load Messages
Metrics
Key Value Offset Partition GCreated -
time .." func?":1637005375.693975,1637005378.196584. }}}} 8 0 Mon, 15 Nov 2021 19:42:58 GMT
time " func2":1637005371.6884127,1637005374.19104,}}}} T 0 Mon, 15 Nov 2021 19:42:54 GMT
time .. func2":1637005367.6824443,1637005370.1850631,}}}} 6 0 Mon, 15 Nov 2021 19:42:50 GMT
Showing 3 ltems
Terms of Use and Privacy  Cookie Preferences Copyright @ 2021, Oracle andjor its affiliates. All rights reserved.

7.5 Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit originally built at SoundCloud,
now a CNCF (Cloud Native Computing Foundation) project used by many companies and organizations.
Prometheus collects and stores its metrics as time series data, i.e. metrics information is stored with
the timestamp at which it was recorded, alongside optional key-value pairs called labels. If the targe
code/service is a long running service, Prometheus is a good option for monitoring solution. HiQ provide
an out-of-the-box solution for Prometheus.

Like the other integration methods, you need to set environment variable TRACE TYPE. To enable
prometheus monitoring, you need to set it to prometheus.

Up to your performance SLA, you can call start http server from the main thread or, for better
performance, you may want to use pushgateway but that involves more setup and operation overhead.

The following example shows how to expose Prometheus metrics with HiQ.

86 Chapter 7. HiQ Vendor Integration


https://prometheus.io/
https://github.com/prometheus/pushgateway

HiQ - A Modern Observability System, Release 1.1.7

if npame == " main_ ":

import hiq

import os

import time

import random

from prometheus_client import start http server

= o0s.path.dirname(os.path.realpath( file ))

def run main():

with hiq.HiQStatusContext():
start http server(8681)
count = 0
while count < 10:
with hiq.HiQLatency(f"{here}/hiq.conf") as driver:
hig.mod("main") .main()
driver.show()
time.sleep(random.random())
count += 1

os.environ["TRACE TYPE"] = "prometheus"
run_main()

Run the driver code and visit http://localhost:8681/metrics, and we can see the metrics has
been exposed. Please be noted that the metrics name has an hiq as the prefix so that the metrics name
is unique.

7.5. Prometheus

87




HiQ - A Modern Observability System, Release 1.1.7

A Not Secure | ;7 ... ...1.2:8681/metrics

# HELP python_gc_objects_collected_total Objects collected during geo

# TYPE python gc_objects_collected total counter

python ge objects _collected total{generation="0"} 160.0

python_gc objects_collected total{generation="1"} 303.0

python_geo objects_collected total{generation="2"} 0.0

# HELP python gc_objects uncollectable total Uncollectable cbhject found during GC

# TYPE python gc_objects _uncollectable total counter
python_ge_objects_uncollectable_total{generation="0"} 0.0

python_ge objects_uncollectable total{generation="1"} 0.0
python_ge_objects_uncollectable total{generation="2%} 0.0

# HELF python gc collections_total Number of times this generation was collected

# TYPE python gc collections_total counter

python_ge collections total{generation="0"} Z23.0

python_ge collections total{generation="1%} 20.0

python_ge collections total{generation="2"} 1.0

# HELF python_info Python platform information

# TYPE python_info gauge

python_info{implementation="CPython" ,major="3",minor="8",patchlevel="10",version="3.8.10"} 1.0
# HELP process_virtual memory_bytes Virtual memory size in bytes.

# TYPE process_virtual memory bytes gauge

process_virtual memory bytes 2.85251584e+0%

# HELF process_resident memory bytes Resident memory size in bytes.

# TYPE process_resident memory bytes gauge

process_resident memory bytes 2.31665664e+08

# HELF process_start time seconds Start time of the process since unix epoch in seconds.
# TYPE process_start time_seconds gauge

process_start time seconds 1.6369657774e+0%

# HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.

# TYPE process_cpu_seconds_total counter

process_cpu_seconds _total 2.8200000000000003

# HELF process_open_fds Humber of open file descriptors.

# TYPE process_open_fds gauge

process_open_fds E.0

# HELF process max fds Maximum number of open file descriptors.

# TYPE process_max_fds gauge
P oS S T Ao a o[

: 1g_maln
# TYPE hig main summary

hig main_count 42.0

hig main sum 168.1745343B369557

# HELF hig main created hig main

# TYPE hig main created gauge

hig main ecreated l.636965778757816Be+089
# HELP hig funcl hig_funcl

# TYPE hig funcl summary

hig funcl count 42.0

hig funcl sum 16B8.1715287026018

# HELF hig_funcl created hig_funcl

# TYPE hig funcl created gauge

hig funcl created 1.636965778757%246e+09
# HELF hig func? hig_funcl

# TYPE hig func? summary

hig func2 count 42.0

hig func2 sum 105.097523253B7672

# HELP hig_ func? created hig_func2

# TYPE hig func? created gauge

hig func2 created 1.636965780259714e+00

88 Chapter 7. HiQ Vendor Integration



HiQ - A Modern Observability System, Release 1.1.7

We can see the summary of main, funcl, func2 exposed. If the prometheus server is running in the
same host, you can add the config in prometheus.yml to scrape the metrics for user to query.

- job_name: "hiqg"
static_configs:
- targets: ["localhost:8681"]

7.5. Prometheus 89




HiQ - A Modern Observability System, Release 1.1.7

90

Chapter 7. HiQ Vendor Integration



[ B S

CHAPTER 8

FAQ

8.1 HiQ vs cProfile

cProfile is a built-in python module that can perform profiling. It is the most commonly used profiler
currently. It is non-intuitive and has wide support by third party modules.

We still use the same target code, and the driver code could be like this:

import cProfile
import hiq

with cProfile.Profile() as pr:
hig.mod("main").main()
pr.dump stats("result.pstat")

Running this will generate a stats file called result.pstat. We can use tools like snakeviz to analyze
the result. SnakeViz is a browser based graphical viewer for the output of Python’ s cProfile module and
an alternative to using the standard library pstats module. SnakeViz is available on PyPI. Install with

pip:

pip install snakeviz

Then simply run the command:

snakeviz result.pstat

A web browser will start and you can view the result like:

91




HiQ - A Modern Observability System, Release 1.1.7

Call Stack
Icicle - _

Style:

zeicte -]

main.py:10(func2) ~:0(<built-in method time.sleep>)
Depth: 10 ~ 250s 4.00s
cutefe: | L -~ 1000 v ~:0(<built-in method time.sleep>)
.00s
L E—
nealls tottime v percall cumtime percall filename:lineno(function)

2 4.003 2.001 4.003 2.001 ~:0(<built-in method time.sleep>)

1 8.816e-05 8.816e-05 8.816e-05 8.816e-05 ~:0{<built-in method builtins.compile>)

2 6.147e-05 3.073e-05 6.147e-05 3.073e-05 ~:0(<built-in method builtins print>)

1 5.97e-05 5.97e-05 5.97e-05 5.97e-05 ~:0(<built-in method posix.mkdir>)

2 2.566e-05 1.283e-05 2.566e-05 1.283e-05 ~:0{<built-in method io.open_code>)

6 1.97e-05 3.283e-06 1.97e-05 3.283e-06 ~:0(<built-in method posix stat>)

1 1.894e-05 1.894e-05 4.003 4.003 main.py:4(funcl)

1 1.533e-05 1.533e-05 1.533e-05 1.533e-05 ~:0{<built-in method posix.open>)

1 10m. ne IRT LRV aanT. e Anrm Az L L

SR

cProfile is based on ¢ module Lsprof (_Isprof.c) so it is very high performant in term of program execu-
tion. I even use cProfile to profile HiQ sometimes with small target code for development purpose.

However, it has many drawbacks:

e High Overhead: cProfile measures every single function call, so for program which has many func-

tion calls, it has high overhead and distorted results.

Overwhelming Irrelevant Information: cProfile outputs too much information which is irrelevant
to the real problem.

Useful for Offline Development Only: Quite often your program will only be slow when run under
real-world conditions, with real-world inputs. Maybe only particular queries from users slow down
your web application, and you don’ t know which queries. Maybe your batch program is only
slow with real data. But cProfile as we saw slows do your program quite a bit, and so you likely
don’ t want to run it in your production environment. So while the slowness is only reproducible
in production, cProfile only helps you in your development environment.

Function Only and No Argument Information: cProfile can tell you “slowfunc() is slow” , where
it averages out all the inputs to that function. And that’ s fine if the function is always slow. But
sometimes you have some algorithmic code that is only slow for specific inputs. cProfile will not be
able to tell you which inputs caused the slowness, which can make it more difficult to diagnose the
problem.

92

Chapter 8. FAQ


https://github.com/python/cpython/blob/main/Modules/_lsprof.c

HiQ - A Modern Observability System, Release 1.1.7

¢ Difficult to Customize: cProfile is designed to be a handy tool. You can write plugin with different
cost functions, but that is not enough in many cases. It is not easy to customize.

HiQ, on the other hand, has low overhead and make it always transparent to users. It give users the option
of which function to trace. With the zero span node filtered, the HiQ tree is even more concise and you can
find the bottleneck at the first glance. It is fully customizable, fully dynamic. It is designed for production
environment, so you can use HiQ in both production and development environment.

8.2 HiQ vs ZipKin vs Jaeger

HiQ can be used for both monolithic application and distributed tracing. HiQ can integrate with Zip-
kin and Jaeger and empower them with declarative, non-intrusive, dynamic and transparent distributed
tracing.

8.3 HiQ vs GaalVM Insight

GraalVM Insight isable to trace information for all GraalVM languages (JavaScript, Python, Ruby,
R) in a non-intrusive way with minimum overhead. However, it requires GraalVM installed, and it also
suffers from compatability issue with third-party libraries like numpy.

8.2. HiQ vs ZipKin vs Jaeger 93



HiQ - A Modern Observability System, Release 1.1.7

94

Chapter 8. FAQ



CHAPTER 9

e OpenTelemetry

REFERENCE

95


https://opentelemetry.io/docs/python/getting-started/

HiQ - A Modern Observability System, Release 1.1.7

96

Chapter 9. Reference



CHAPTER 10

HIQ API

10.1 HiQ Classes

hig.base.HiQSimple
alias of hiq.base.HiQLatency

10.2 Integration Classes

10.3 Distributed Tracing

10.4 Metrics Client

10.5 Utility Functions

Warning: hiq.HiQStatusContext is not multi-thread and multi-processing safe.

hig.get_env_int(x, default=0) — int

hiq.get_env_float(x, default=0) — float

97



HiQ - A Modern Observability System, Release 1.1.7

hig.get_home()

hig.get_proxies() — dict
hiqg.random_str(length of string=12)
hiq.memoize (func)

hig.memoize_first (func)
hig.get_memory_kb() — float
hig.get_memory b () — float
hiq.ts_pair_to_dt(t1: float, t2: float) — str
hiqg.ts_to_dt(timestamp: float) — str

EiQ

HiQisadeclarative,non-intrusive,dynamicand transparent tracking system for both mono-
lithic application and distributed system. It brings the runtime information tracking and optimization to
a new level without compromising with speed and system performance, or hiding any tracking overhead
information. HiQ applies for both I/O bound and CPU bound applications.

To explain the four features, declarative means you can declare the things you want to track in a text
file, which could be a json, yaml or even csv,and no need to change program code. Non-intrusive means
HiQ doesn’ t requires to modify original python code. Dynamic means HiQ supports tracing metrics
featuring at run time, which can be used for adaptive tracing. Transparent means HiQ) provides the
tracing overhead and doesn’ t hide it no matter it is huge or tiny.

In addition to latency tracking, HiQ provides memory, disk I/O and Network I/O tracking out of the box.
The output can be saved in form of normal line by line log file, or HiQ tree, or span graph.

98 Chapter 10. HiQ API



CHAPTER 11

INSTALLATION

pip install hig-python

99




HiQ - A Modern Observability System, Release 1.1.7

100 Chapter 11. Installation



CHAPTER 12

GET STARTED

To use HiQ, you need to have target codeand driver code.

Target Code and Driver Code

N

kL

HiQ

Driver Code Target Code

Process Space By Vision Services MLE 2021

Let start with a simplest example by running HiQ) against a monolithic application. The target code is
main.py:

import time

(continues on next page)

101




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

def funcl():
time.sleep(1l.5)
print("funcl")
func2()

def func2():
time.sleep(2.5)
print("func2")

def main():
funcl()

if npame == " main_ ":
main()

In this target code, there is a simple chain of function calls: main () -> funcl-> func2. We can actually
run the target code

cd examples
python main.py

And the output should be

funcl
func2

Now let’ s run the driver code, and if everything is fine, you should be able to see the output like this:

M python main_driver.py

funcl

func2

[2821-11-81 21:54:18.222424 21:54:22.226879] [100.00%] ®_root_time(4.08045)

[OH:163us]
[2821-11-81 21:54:18.222424 21:54:22.226879] [160.00%] 1_ _main(4.080845)
[2821-11-81 21:54:18.222472 21:54:22.226868] [106.00%] 1__ funcl(4.8844)
[2621-11-81 21:54:19.724213 21:54:22.226818] [ 62.508%] 1__ func2(2.5826)

¢ Explanation of driver code

import hiq

def run main():
driver = hig.HiQLatency(
hiq table or path=[

[“main“, IIII’ "main", "main"],
[“main“, IIII’ llfunclll’ "fUﬂCl"],
[“main“, IIII’ llfunczu’ llfunczu]’

]
)

hig.mod("main") .main()

(continues on next page)

102 Chapter 12. Get Started




HiQ - A Modern Observability System, Release 1.1.7

(continued from previous page)

driver.show()

if  name " main_ ":

run_main()

Line 1: import python module hig.Line 5-11: create an object of class hiq.HiQLatency and declare
we want to trace function main(), funcl(), func2() in main.py.Line 12: call function main() in
main.py.Line 13: print HiQ trees.

103



HiQ - A Modern Observability System, Release 1.1.7

104 Chapter 12. Get Started



CHAPTER 13

DOCUMENTATION

HTML: £ HiQ) Online Documents | PDF: Please check 4 HiQQ User Guide.

105


https://hiq.readthedocs.io/en/latest/index.html
https://github.com/oracle-samples/hiq/blob/main/hiq/docs/hiq.pdf

HiQ - A Modern Observability System, Release 1.1.7

106 Chapter 13. Documentation



CHAPTER 14

EXAMPLES

Please check & examples for usage examples.

107


https://github.com/oracle-samples/hiq/blob/main/hiq/examples

HiQ - A Modern Observability System, Release 1.1.7

108 Chapter 14. Examples



CHAPTER 15

CONTRIBUTING

HiQ welcomes contributions from the community. Before submitting a pull request, please review our 4
contribution guide.

109


https://github.com/oracle-samples/hiq/blob/main/CONTRIBUTING.md
https://github.com/oracle-samples/hiq/blob/main/CONTRIBUTING.md

HiQ - A Modern Observability System, Release 1.1.7

110 Chapter 15. Contributing



CHAPTER 16

SECURITY

Please consult the & security guide for our responsible security vulnerability disclosure process.

111


https://github.com/oracle-samples/hiq/blob/main/SECURITY.md

HiQ - A Modern Observability System, Release 1.1.7

112 Chapter 16. Security



CHAPTER 17

LICENSE

Copyright (c) 2022 Oracle and/or its affiliates. Released under the Universal Permissive License v1.0 as
shown at https://oss.oracle.com/licenses/upl/.

17.1 Indices and tables

e genindex
e modindex
e search

113


https://oss.oracle.com/licenses/upl/

HiQ - A Modern Observability System, Release 1.1.7

114 Chapter 17. License



G

get env float() (in module hiq), 97
get env_int() (in module hiq), 97
get _home() (in module hiq), 97

get memory b() (in module hiqg), 98
get memory kb() (in module hiq), 98
get proxies() (in module hiq), 98

H

HiQSimple (in module hiq.base), 97

M

memoize() (in module hiq), 98
memoize first() (in module hiq), 98

R

random_str() (in module hiq), 98

T

ts pair to dt() (in module hiq), 98
ts to dt() (in module hiq), 98

INDEX

115



	Table of contents
	HiQ Background
	Monolithic Application vs. Distributed System and Microservice Architecture
	What is a monolithic architecture?
	What is a distributed/microservice architecture?

	Monitoring and Observability
	Blackbox monitoring
	Whitebox Monitoring
	Instrumentation

	Metrics
	Abs
	Delta

	Application Performance Monitoring
	Distributed Tracing

	HiQ Core Concepts
	Target Code
	Driver Code
	HiQ Tracing Class/Object
	LumberJack/Jack
	Log Monkey King
	HiQ Tree
	HiQ Conf
	Latency Overhead

	HiQ Tracing Tutorial
	Global HiQ Status
	Dynamic Tracing
	Metrics Customization
	ExtraMetrics
	Complex Data Type
	Large Data Structure

	Memory Tracing
	Timestamp With Non-latency Metrics

	Disk I/O Tracing
	System I/O Tracing
	Network I/O Tracing
	Exception Tracing
	Multiple Tracing

	HiQ Advanced Topics
	Customized Tracing
	Log Metrics and Information to stdio
	Trace Metrics and Information In HiQ Tree

	Log Monkey King
	Log Metrics and Information to stdio
	Log Metrics and Information to file

	LumberJack
	Async and Multiprocessing in Python

	HiQ UI
	Disable HiQ
	Enable HiQ

	HiQ Distributed Tracing
	OpenTelemetry
	Jaeger
	Set Up
	Thrift + HiQ
	Protobuf + HiQ

	ZipKin
	Set Up
	JSON + HTTP + HiQ
	Protobuf + HiQ

	Ray
	Dask

	HiQ Vendor Integration
	OCI APM
	Get APM Endpoint and Environments Setup
	HiQOciApmContext
	HiQOpenTelemetryContext
	Reference

	OCI Functions
	OCI Telemetry(T2)
	OCI Streaming
	Prometheus

	FAQ
	HiQ vs cProfile
	HiQ vs ZipKin vs Jaeger
	HiQ vs GaalVM Insight

	Reference
	HiQ API
	HiQ Classes
	Integration Classes
	Distributed Tracing
	Metrics Client
	Utility Functions

	Installation
	Get Started
	Documentation
	Examples
	Contributing
	Security
	License
	Indices and tables

	Index
	Index

